Synthesis of chiral cyclohexane-linked bisimidazolines

  1. ,
  2. and
  3. ORCID Logo
State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
  1. Corresponding author email
Associate Editor: S. Bräse
Beilstein J. Org. Chem. 2025, 21, 1786–1790. https://doi.org/10.3762/bjoc.21.140
Received 20 May 2025, Accepted 19 Aug 2025, Published 04 Sep 2025
Full Research Paper
cc by logo

Abstract

Both chiral bisoxazolines and bisimidazolines are efficient chiral ligands in metal-catalyzed asymmetric organic transformations. Chiral cyclohexane-linked bisimidazolines were prepared from optically active cyclohexane-1,2-dicarboxylic acid and 1,2-diphenylethane-1,2-diamines via the monosulfonylation of 1,2-diphenylethane-1,2-diamines, condensation of N-sulfonylated 1,2-diphenylethane-1,2-diamines and cyclohexane-1,2-dicarboxylic acid, and the final cyclization with the in situ generated Hendrickson reagent.

Introduction

Chiral bisoxazolines [1-9] and bisimidazolines [10-15] are efficient chiral ligands and have been widely applied in various metal-catalyzed asymmetric organic transformations. Various chiral bisoxazoline ligands have been prepared from diacids and enantiopure vicinal amino alcohols and utilized in different metal-catalyzed asymmetric organic reactions [1-9]. In comparison with bisoxazoline ligands, relatively less attention has been paid to bisimidazoline ligands [10-15]. Some well investigated bisimidazoline ligands are pyridine-linked bisimidazoline (PyBim) ligands derived from pyridine-2,6-dicarbonitrile or pyridine-2,6-dicarboxylic acid and vicinal diamines, as analogues of pyridine-linked bisoxazoline (PyBOX) ligands [16,17]. They exhibited excellent performance in metal-catalyzed asymmetric organic reactions. Chiral rigid backbone-linked bisoxazoline ligands, such as anthracene-1,8-linked bisoxazolines (AnBOX) [18-20] showed excellent enantioselectivities for certain substrates due to their ability to fix transition states in asymmetric reactions, realizing excellent stereoselectivities. However, they also presented some limitations to the substrate scope due to their complete rigidity. Cyclohexane-1,2-linked bisoxazolines (cHBOX) are a class of bisoxazoline ligands with the more flexible cyclohexane as linker [21,22]. Chiral cyclohexane-1,2-linked bisoxazolines fix transition states in catalytic asymmetric reactions, in whch the transition states can be regulated depending upon the structures of substrates, achieving excellent stereoselectivities among various substrates in the catalytic asymmetric aziridination of α,β-unsaturated ketones [21]. The steric effect of cHBOX ligands can be changed easily by the use of different chiral vicinal amino alcohols as starting materials in their synthesis. However, it is difficult to tune the electronic effects of cHBOX ligands. Chiral cyclohexane-1,2-linked bisimidazolines possess similar structural features as cHBOX ligands and their electronic effect can be tuned by the introduction of different substituents on the NH moiety of the imidazoline ring. Herein, we designed and synthesized several sulfonylated cyclohexane-1,2-linked bisimidazoline (cHBim) ligands (Figure 1).

[1860-5397-21-140-1]

Figure 1: Bisoxazoline and bisimidazoline ligands.

Results and Discussion

The synthesis of the chiral cyclohexane-linked bisimidazoline ligands started from enantiopure (1S,2S)-cyclohexane-1,2-dicarboxylic acid (3) and (1R,2R)-1,2-diphenylethane-1,2-diamine (1), hoping that the phenyl groups in the designed bisimidazoline ligands stemming from the vicinal diamine play an important role in the stereocontrol of catalytic asymmetric organic reactions [23-26] (Scheme 1). The C2-symmetric (1R,2R)-1,2-diphenylethane-1,2-diamine (1) was selected as a suitable chiral vicinal diamine to prevent the generation of different isomeric sulfonamides in the reaction with sulfonyl chlorides. Diamine 1 was first reacted with different sulfonyl chlorides to prepare N-[(1R,2R)-2-amino-1,2-diphenylethyl]sulfonamides 2 in 61–74% yields. The sulfonamides 2 were then further reacted with (1S,2S)-cyclohexane-1,2-dicarboxylic acid (3) in the presence of EDCI (3-ethyl-1-(3-dimethylaminopropyl)carbodiimide hydrochloride) as a coupling reagent under the catalysis of DMAP (4-dimethylaminopyridine), affording (1S,2S)-N1,N2-bis((1R,2R)-2-(sulfonamido)-1,2-diphenylethyl)cyclohexane-1,2-dicarboxamides 4 in 32–87% yields. Electron-deficient sulfonamides 2a, 2e and 2f with both electron-donating methyl and strong electron-withdrawing trifluoromethyl and 4-nitrophenyl groups showed low reactivity in the formation of cyclohexane-1,2-dicarboxamides 4 due to their poor nucleophilicity. Finally, (1S,2S)-N1,N2-bis((1R,2R)-2-(sulfonamido)-1,2-diphenylethyl)cyclohexane-1,2-dicarboxamides 4 were cyclized with the Hendrickson reagent (triphenylphosphonium anhydride triflate in situ generated from triphenylphosphine and triflic anhydride) as an activating reagent [27], giving rise to (1S,2S)-1,2-bis((4R,5R)-1-(sulfonyl)-4,5-diphenyl-4,5-dihydro-1H-imidazol-2-yl)cyclohexanes 5 in 30–70% yields. 1,2-Cyclohexane-1,2-dicarboxamide 4e with two strong electron-poor 4-nitrophenyl groups generated the corresponding cyclized product 5e in a low yield of 30% due to its poor nucleophilicity. However, 1,2-cyclohexane-1,2-dicarboxamide 4f with two very strong electron-poor trifluoromethyl groups did not undergo cyclization due to its very poor nucleophilicity. The results are collected in Table 1.

[1860-5397-21-140-i1]

Scheme 1: Synthesis of chiral cyclohexane-linked bisimidazoline ligands.

Table 1: Synthesis of chiral cyclohexane-linked bisimidazoline ligands.

Entry Compd R Configuration of diamine 1 Yield of isolated product/%
1 2a Me R,R 67
2 2b Ph R,R 74
3 2c 4-MeC6H4 R,R 61
4 2d 4-MeOC6H4 R,R 64
5 2e 4-O2NC6H4 R,R 72
6 2f F3C R,R 61
7 2g 4-MeC6H4 S,S 61
8 4a Me R,R 38
9 4b Ph R,R 71
10 4c 4-MeC6H4 R,R 73
11 4d 4-MeOC6H4 R,R 87
12 4e 4-O2NC6H4 R,R 52
13 4f F3C R,R 32
14 4g 4-MeC6H4 S,S 70
15 5a Me R,R 51
16 5b Ph R,R 57
17 5c 4-MeC6H4 R,R 36
18 5d 4-MeOC6H4 R,R 70
19 5e 4-O2NC6H4 R,R 30
20 5g 4-MeC6H4 S,S 36

Following the similar strategy, (1S,2S)-1,2-bis((4S,5S)-1-(4-methylphenylsulfonyl)-4,5-diphenyl-4,5-dihydro-1H-imidazol-2-yl)cyclohexane (5g) was also prepared from enantiopure (1S,2S)-cyclohexane-1,2-dicarboxylic acid (3) and (1S,2S)-1,2-diphenylethane-1,2-diamine ((S,S)-1) to study the influence of different configurations of bisimidazoline ligands 5 on the stereocontrol in catalytic asymmetric reactions (Table 1).

To improve the synthetic efficiency, a different strategy for the synthesis of a nonsulfonylated cyclohexane-linked bisimidazoline with subsequent sulfonylation with different sulfonyl chlorides was also considered and attempted (Scheme 2). For this purpose, tert-butyl N-[(1R,2R)-2-amino-1,2-diphenylethyl]carbamate (2h) with an acid-sensitive Boc (tert-butoxycarbonyl) protecting group was prepared in 70% yield from C2-symmetric (1R,2R)-1,2-diphenylethane-1,2-diamine (1) and Boc2O. Compound 2h was then converted to (1S,2S)-N1,N2-bis((1R,2R)-2-(tert-butoxycarbonyl)-1,2-diphenylethyl)cyclohexane-1,2-dicarboxamide (4h) in 65% yield through the reaction with (1S,2S)-cyclohexane-1,2-dicarboxylic acid (3). However, compound 4h did not undergo cyclization possibly due to weak nucleophilicity and steric hindrance of the Boc-protected amino group.

[1860-5397-21-140-i2]

Scheme 2: Attempted synthesis of chiral cyclohexane-linked bisimidazoline 5h.

On the basis of the previous report [28], a possible reaction mechanism is presented in Scheme 3. The reaction of triphenylphosphine oxide and triflic anhydride first generates an activating agent, the Hendrickson reagent (A). The amide in cyclohexane-1,2-dicarboxamides 4 nucleophilically attacks the phosphonium in A to generate intermediate B by loss of triphenylphosphine oxide and triflic acid. The nucleophilic sulfonamide in B intramolecularily attacks the generated imine moiety in B to form intermediate C, in which triflic acid may protonate the imine moiety in B to assist the nucleophilic attack. Intermediate C further transforms to imidazoline product 5 by loss of triphenylphosphine oxide and triflic acid.

[1860-5397-21-140-i3]

Scheme 3: Proposed reaction mechanism.

Conclusion

Both chiral bisoxazolines and bisimidazolines are efficient and widely applied chiral ligands in metal-catalyzed asymmetric organic reactions. Several chiral cyclohexane-linked bisimidazolines were prepared from enantiopure (1S,2S)-cyclohexane-1,2-dicarboxylic acid and (1R,2R)- and (1S,2S)-1,2-diphenylethane-1,2-diamines via the monosulfonylation of 1,2-diphenylethane-1,2-diamines, condensation of N-sulfonylated 1,2-diphenylethane-1,2-diamines with (1S,2S)-cyclohexane-1,2-dicarboxylic acid followed by the Hendrickson reagent-mediated final cyclization.

Supporting Information

Supporting Information File 1: Analytical data and copies of 1H and 13C NMR spectra of compounds 2 and 4, copies of HRMS spectra of unknown compounds 4 and 5.
Format: PDF Size: 3.6 MB Download

Funding

This research was supported by the National Key R & D Program of China (No. 2022YFF0709803).

Author Contributions

Changmeng Xi: conceptualization; formal analysis; funding acquisition; investigation; methodology; project administration; resources; supervision; validation; writing – review & editing. Qingshan Sun: data curation; investigation; validation; visualization. Jiaxi Xu: data curation; formal analysis; investigation; methodology; resources; validation; visualization; writing – original draft.

Data Availability Statement

All data that supports the findings of this study is available in the published article and the supporting information of this article.

References

  1. Ghosh, A. K.; Mathivanan, P.; Cappiello, J. Tetrahedron: Asymmetry 1998, 9, 1–45. doi:10.1016/s0957-4166(97)00593-4
    Return to citation in text: [1] [2]
  2. Desimoni, G.; Faita, G.; Quadrelli, P. Chem. Rev. 2003, 103, 3119–3154. doi:10.1021/cr020004h
    Return to citation in text: [1] [2]
  3. Desimoni, G.; Faita, G.; Jørgensen, K. A. Chem. Rev. 2006, 106, 3561–3651. doi:10.1021/cr0505324
    Return to citation in text: [1] [2]
  4. Rasappan, R.; Laventine, D.; Reiser, O. Coord. Chem. Rev. 2008, 252, 702–714. doi:10.1016/j.ccr.2007.11.007
    Return to citation in text: [1] [2]
  5. Nishiyama, H.; Ito, J.-i.; Shiomi, T.; Hashimoto, T.; Miyakawa, T.; Kitase, M. Pure Appl. Chem. 2008, 80, 743–749. doi:10.1351/pac200880040743
    Return to citation in text: [1] [2]
  6. O'Reilly, S.; Guiry, P. J. Synthesis 2014, 46, 722–739. doi:10.1055/s-0033-1340829
    Return to citation in text: [1] [2]
  7. Liao, S.; Sun, X.-L.; Tang, Y. Acc. Chem. Res. 2014, 47, 2260–2272. doi:10.1021/ar800104y
    Return to citation in text: [1] [2]
  8. Johnson, J. S.; Evans, D. A. Acc. Chem. Res. 2000, 33, 325–335. doi:10.1021/ar960062n
    Return to citation in text: [1] [2]
  9. Wang, L.; Zhou, J.; Tang, Y. Chin. J. Chem. 2018, 36, 1123–1129. doi:10.1002/cjoc.201800373
    Return to citation in text: [1] [2]
  10. Arai, T.; Mizukami, T.; Yokoyama, N.; Nakazato, D.; Yanagisawa, A. Synlett 2005, 2670–2672. doi:10.1055/s-2005-917101
    Return to citation in text: [1] [2]
  11. Nakamura, S.; Hyodo, K.; Nakamura, Y.; Shibata, N.; Toru, T. Adv. Synth. Catal. 2008, 350, 1443–1448. doi:10.1002/adsc.200800189
    Return to citation in text: [1] [2]
  12. Du, X.; Liu, H.; Du, D.-M. Eur. J. Org. Chem. 2011, 786–793. doi:10.1002/ejoc.201001347
    Return to citation in text: [1] [2]
  13. Kondo, M.; Nishi, T.; Hatanaka, T.; Funahashi, Y.; Nakamura, S. Angew. Chem., Int. Ed. 2015, 54, 8198–8202. doi:10.1002/anie.201503098
    Return to citation in text: [1] [2]
  14. Kondo, M.; Saito, H.; Nakamura, S. Chem. Commun. 2017, 53, 6776–6779. doi:10.1039/c7cc03307a
    Return to citation in text: [1] [2]
  15. Nakamura, S.; Matsuzaka, K.; Hatanaka, T.; Funahashi, Y. Org. Lett. 2020, 22, 2868–2872. doi:10.1021/acs.orglett.0c00289
    Return to citation in text: [1] [2]
  16. Bhor, S.; Anilkumar, G.; Tse, M. K.; Klawonn, M.; Döbler, C.; Bitterlich, B.; Grotevendt, A.; Beller, M. Org. Lett. 2005, 7, 3393–3396. doi:10.1021/ol050821e
    Return to citation in text: [1]
  17. Anilkumar, G.; Bhor, S.; Tse, M. K.; Klawonn, M.; Bitterlich, B.; Beller, M. Tetrahedron: Asymmetry 2005, 16, 3536–3561. doi:10.1016/j.tetasy.2005.08.060
    Return to citation in text: [1]
  18. Xu, J. X.; Ma, L. G.; Jiao, P. Chem. Commun. 2004, 2004, 1616–1617. doi:10.1039/b404134h
    Return to citation in text: [1]
  19. Ma, L.; Jiao, P.; Zhang, Q.; Xu, J. Tetrahedron: Asymmetry 2005, 16, 3718–3734. doi:10.1016/j.tetasy.2005.09.025
    Return to citation in text: [1]
  20. Ma, L.; Jiao, P.; Zhang, Q.; Du, D.-M.; Xu, J. Tetrahedron: Asymmetry 2007, 18, 878–884. doi:10.1016/j.tetasy.2007.03.032
    Return to citation in text: [1]
  21. Ma, L.; Du, D.-M.; Xu, J. J. Org. Chem. 2005, 70, 10155–10158. doi:10.1021/jo051765y
    Return to citation in text: [1] [2]
  22. Ma, L.; Du, D.-M.; Xu, J. Chirality 2006, 18, 575–580. doi:10.1002/chir.20282
    Return to citation in text: [1]
  23. Xu, J. Molecules 2024, 29, 1454. doi:10.3390/molecules29071454
    Return to citation in text: [1]
  24. Wang, C.; Chen, N.; Yang, Z.; Xu, J. Molecules 2024, 29, 1963. doi:10.3390/molecules29091963
    Return to citation in text: [1]
  25. Wei, H.; Zhang, Y.; Jin, S.; Yu, Y.; Chen, N.; Xu, J.; Yang, Z. Molecules 2024, 29, 2978. doi:10.3390/molecules29132978
    Return to citation in text: [1]
  26. Li, L.; Wei, H.; Yang, Z.; Xu, J. Org. Lett. 2025, 27, 4875–4879. doi:10.1021/acs.orglett.5c01081
    Return to citation in text: [1]
  27. You, S.-L.; Kelly, J. W. Org. Lett. 2004, 6, 1681–1683. doi:10.1021/ol049439c
    Return to citation in text: [1]
  28. Elson, K. E.; Jenkins, I. D.; Loughlin, W. A. Org. Biomol. Chem. 2003, 1, 2958–2965. doi:10.1039/b305375j
    Return to citation in text: [1]
Other Beilstein-Institut Open Science Activities