Supporting Information
Supporting Information File 1: Experimental data. An improved method for the isolation of the triterpenic acids, additional experimental procedures, copies of 1H-NMR, 13C-NMR, DEPT, HRMS spectra and Gel micrographs. | ||
Format: PDF | Size: 5.5 MB | Download |
Supporting Information File 2: CIF data of arjuna-bromolactone 3 | ||
Format: PDF | Size: 43.8 KB | Download |
Cite the Following Article
A simple route for renewable nano-sized arjunolic and asiatic acids and self-assembly of arjuna-bromolactone
Braja G. Bag, Partha P. Dey, Shaishab K. Dinda, William S. Sheldrick and Iris M. Oppel
Beilstein J. Org. Chem. 2008, 4, No. 24.
https://doi.org/10.3762/bjoc.4.24
How to Cite
Bag, B. G.; Dey, P. P.; Dinda, S. K.; Sheldrick, W. S.; Oppel, I. M. Beilstein J. Org. Chem. 2008, 4, No. 24. doi:10.3762/bjoc.4.24
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Niu, X.; He, Y.; Musl, O.; Ferson M. Bautista, G.; Xie, Q.; Wu, Y.; Guo, J.; Rojas, O. J. Bark extractives as sources of carbon-efficient functional precursors and materials. The Innovation Materials 2024, 2, 100074. doi:10.59717/j.xinn-mater.2024.100074
- Liu, Y.; Liu, K.; Wang, X.; Shao, Y.; Li, X.; Hao, L.; Zhang, X.; Yi, J.; Lu, J. Co-assembling nanoparticles of Asiatic acid and Caffeic acid phenethyl ester: Characterization, stability and bioactivity in vitro. Food chemistry 2022, 402, 134409. doi:10.1016/j.foodchem.2022.134409
- Hou, Y.; Zou, L.; Li, Q.; Chen, M.; Ruan, H.; Sun, Z.; Xu, X.; Yang, J.; Ma, G. Supramolecular assemblies based on natural small molecules: Union would be effective. Materials today. Bio 2022, 15, 100327. doi:10.1016/j.mtbio.2022.100327
- Manna, S.; Dey, A.; Majumdar, R.; Bag, B. G.; Ghosh, C.; Roy, S. Self assembled arjunolic acid acts as a smart weapon against cancer through TNF- α mediated ROS generation. Heliyon 2020, 6, e03456. doi:10.1016/j.heliyon.2020.e03456
- Makhafola, T. J.; Elgorashi, E.; McGaw, L. J.; Awouafack, M. D.; Verschaeve, L.; Eloff, J. N. Isolation and characterization of the compounds responsible for the antimutagenic activity of Combretum microphyllum (Combretaceae) leaf extracts. BMC complementary and alternative medicine 2017, 17, 446. doi:10.1186/s12906-017-1935-5
- Bag, B. G.; Majumdar, R. Self‐assembly of Renewable Nano‐sized Triterpenoids. Chemical record (New York, N.Y.) 2017, 17, 841–873. doi:10.1002/tcr.201600123
- Bag, B. G.; Das, S.; Hasan, S. N.; Barai, A. C. Nanoarchitectures by hierarchical self-assembly of ursolic acid: entrapment and release of fluorophores including anticancer drug doxorubicin. RSC Advances 2017, 7, 18136–18143. doi:10.1039/c7ra02123b
- Majumdar, R.; Tantayanon, S.; Bag, B. G. A Novel Trihybrid Material Based on Renewables: An Efficient Recyclable Heterogeneous Catalyst for C-C Coupling and Reduction Reactions. Chemistry, an Asian journal 2016, 11, 2406–2414. doi:10.1002/asia.201600773
- Ponnapalli, M. G.; Dangeti, N.; Sura, M. B.; Kothapalli, H.; Akella, V. S. S.; Shaik, J. B. Self gelating isoracemosol A, new racemosaceramide A, and racemosol E from Barringtonia racemosa. Natural product research 2016, 31, 63–69. doi:10.1080/14786419.2016.1212033
- Sreedhar, S.; Purushothaman, E.
- Fu, L.; Lin, Q. X.; Liby, K. T.; Sporn, M. B.; Gribble, G. W. An efficient synthesis of methyl 2-cyano-3,12-dioxoursol-1,9-dien-28-oate (CDDU-methyl ester): analogues, biological activities, and comparison with oleanolic acid derivatives. Organic & biomolecular chemistry 2014, 12, 5192–5200. doi:10.1039/c4ob00679h
- Jatczak, K.; Grynkiewicz, G. Triterpene sapogenins with oleanene skeleton: chemotypes and biological activities. Acta biochimica Polonica 2014, 61, 227–243. doi:10.18388/abp.2014_1890
- Bag, B. G.; Majumdar, R. Vesicular self-assembly of a natural triterpenoid arjunolic acid in aqueous medium: study of entrapment properties and in situ generation of gel–gold nanoparticle hybrid material. RSC Adv. 2014, 4, 53327–53334. doi:10.1039/c4ra08710k
- Siewert, B.; Wiemann, J.; Köwitsch, A.; Csuk, R. The chemical and biological potential of C ring modified triterpenoids. European journal of medicinal chemistry 2013, 72, 84–101. doi:10.1016/j.ejmech.2013.11.025
- Bag, B. G.; Majumdar, R.; Dinda, S. K.; Dey, P. P.; Maity, G. C.; Mallia, V. A.; Weiss, R. G. Self-assembly of ketals of arjunolic acid into vesicles and fibers yielding gel-like dispersions. Langmuir : the ACS journal of surfaces and colloids 2013, 29, 1766–1778. doi:10.1021/la304485e
- Kamal, Y.; Musthaba, S. M.; Singh, M.; Parveen, R.; Ahmad, S.; Baboota, S.; Ali, I.; Siddiqui, K. M.; Zaidi, S. A. Development and validation of HPLC method for simultaneous estimation of piperine and guggulsterones in compound Unani formulation (tablets) and a nanoreservoir system. Biomedical chromatography : BMC 2011, 26, 1183–1190. doi:10.1002/bmc.2676
- Bag, B. G.; Dash, S. S. First self-assembly study of betulinic acid, a renewable nano-sized, 6-6-6-6-5 pentacyclic monohydroxy triterpenic acid. Nanoscale 2011, 3, 4564–4566. doi:10.1039/c1nr10886g
- Ramesh, A. S.; Christopher, J. G.; Radhika, R.; Setty, C. R.; Thankamani, V. Isolation, characterisation and cytotoxicity study of arjunolic acid from Terminalia arjuna. Natural product research 2011, 26, 1549–1552. doi:10.1080/14786419.2011.566870
- John, G.; Shankar, B. V.; Jadhav, S. R.; Vemula, P. K. Biorefinery: a design tool for molecular gelators. Langmuir : the ACS journal of surfaces and colloids 2010, 26, 17843–17851. doi:10.1021/la100785r
- Bag, B. G.; Dinda, S. K.; Dey, P. P.; Mallia, V. A.; Weiss, R. G. Self-assembly of esters of arjunolic acid into fibrous networks and the properties of their organogels. Langmuir : the ACS journal of surfaces and colloids 2009, 25, 8663–8671. doi:10.1021/la8042796