Ru-catalyzed dehydrogenative coupling of carboxylic acids and silanes - a new method for the preparation of silyl ester

  1. and
Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, P.R.China. Tel: ++86-2151370613; Fax:++86-21-513201101
  1. Corresponding author email

Beilstein J. Org. Chem. 2008, 4, No. 27. https://doi.org/10.3762/bjoc.4.27
Received 21 May 2008, Accepted 23 Jul 2008, Published 30 Jul 2008
Preliminary Communication
cc by logo
Album

Abstract

Ru3(CO)12/EtI has been found to be an efficient catalyst system for the dehydrosilylation of carboxylic acids with silanes. In the presence of 1 mol% Ru3(CO)12 and 4 mol% EtI, dehydrosilylation reactions in toluene afforded the corresponding silyl esters at 100 °C in good and high yields.

Introduction

Polymers composed of nucleophilically-labile silyl ester bonds in the main chain are being studied as a new type of degradable functional polymers with the potential for an extremely broad range of degradation behavior through variation in the functionalities attached to the silicon atom. In the design of degradable materials, the physical and mechanical properties must be considered for performance in serving the expected function, while degradation rate and degradation products are also very important. Since the lability of a silyl ester linkage is dramatically affected by the substituents attached to the silicon atom, poly(silyl ester)s were found to be an ideal family of degradable polymers [1]. Also, multifunctional silyl esters have been found to be ideal cross-linking agents since they require only mild reaction conditions, especially for silicone elastomers. The demand for degradable poly(silyl ester)s has been increasing greatly due to biomedical field and environmental concerns [2-4]. Obviously, silyl esters are very important intermediates for the preparation of easily degradable functional poly(silyl ester)s, widely utilized as gene delivery carriers, matrices for drug delivery, biodegradable surgical devices, and recyclable materials [2-12]. To develop simple, economical and practical protocols for the conversion of carboxylic acids into silyl esters is not only required in normal organic synthesis procedure, but is also a prerequisite for the accurate performance of gas-chromatographic analyses in organic and biological chemistry [13,14]. From the viewpoint of synthetic chemistry, the ideal protecting group for an active-hydrogen moiety such as carboxylic acid should be attached in high yield, be stable towards severe reaction conditions and, at the same time, be selectively removable in the presence of other functional groups carrying different protecting groups. Indeed, silylation of carboxylic acids is a useful method for their protection because deprotection of silyl esters is easily achieved under mild reaction conditions [15-18].

Generally, silyl esters are made by the coupling of carboxylic acids and chlorosilanes [19-24]. Unavoidably, HCl is formed in these procedures, and a stoichiometric or even an excess amount of bases such as amines or ammonia is needed to consume the HCl gas formed. Since chlorosilanes themselves are produced by the chlorination of silanes, either with chlorine gas [7] or with hydrochloric acid under Pd/C catalysis [25,26], the synthesis of silyl esters from the corresponding silanes requires two reaction steps. Some newer synthetic protocols to silyl esters have been developed and a lot of literature focuses itself on the transition metal-catalyzed cross-coupling of an active hydrogen-moiety containing substances such as water and alcohols with silanes [27]. There are still few examples of dehydrogenative coupling reaction of carboxylic acids with silanes. Silylating agents such as allyltrimethylsilane, hexamethyldisilazane, aminosilanes, N-trimethylsilylalkanamines, N-trimethylsilyl-2-oxazolidinone, N-trimethylsilylacetamide, or trialkylsilyl 2-methallylprop-2-ene-1-sulfinates have been extensively utilized for the transformation of carboxylic acids into the desired silyl esters [28-43]. However, some shortcomings have been noted in these reported methods. The silylations of carboxylic acids with hexamethyldisilazane usually require prolonged reaction time under heating and continuous removal of ammonia or amine formed therein and the silylating agents are expensive. A few examples have been disclosed for dehydrosilylation reactions catalyzed by metal salts such as zinc chloride [26] or, more frequently, by transition metals and metal complexes such as [CuH(Ph3P)] [34], HPtCl6, Rh and Pd [36-44], Co2(CO)6 [45], Cu(Ph3P)3Cl [46] and promoted by organocatalyst such as triphenylphosphine [47]. Generally, catalysts such as transition metals are expensive. [CuH(Ph3P)] requires a multiple-step synthetic approach and in-situ generation protocols.

Results and Discussion

In this communication, we wish to report the first finding that a catalytic system of dodecacarbonyltriruthenium and ethyl iodide [Ru3(CO)12/EtI] effectively promotes the dehydrogenative coupling of carboxylic acids with silanes, yielding the corresponding silyl esters selectively. The results are summarized in Scheme 1 and Table 1Table 4.

[1860-5397-4-27-i1]

Scheme 1: Dehydrogenative silyl ester synthesis with Ru3(CO)12/EtI.

Table 1: Ru3(CO)12-catalyzed dehydrocoupling of propionic acid with triethylsilane in toluenea.

Run Ru3(CO)12 (mol%) EtI (mol%) Temp. (°C) Time (h) GC ratio (%)b,c
  HSiEt3 CH3CH2CO2SiEt3
1 0.25 4 100 12 66 34
2 0.5 4 100 12 52 48
3 1 4 100 8 0 100 (95)
4 2 4 100 8 0 100 (93)
5 4 4 100 8 0 100 (94)
6 8 4 100 8 0 100 (92)
7 1 8 100 8 0 100 (92)
8 1 2 100 12 22 78
9 1 4 20 24 100 0
10 1 4 40 24 82 18
11 1 4 60 24 70 30
12 1 4 80 24 61 39

aPropionic acid (20 mmol), triethylsilane (20 mmol). bGC ratio. cIsolated yield in parentheses.

Dehydrogenative coupling reactions were carried out by heating a mixture of carboxylic acid, silane and a catalytic amount of Ru3(CO)12/EtI in solvents under a nitrogen atmosphere for several hours (Scheme 1, Table 1Table 4, dehydrocoupling reaction was monitored by GC). The transformation of propionic acid with triethylsilane was employed as a model to optimize the reaction conditions.

The dehydrogenative coupling was found to be finished after 8 h at 100 °C, in the presence of 1 mol% Ru3(CO)12 and 4 mol% EtI in toluene, giving the corresponding triethylsilyl propionate in 95% yield (Table 1, Run 3). When the amount of Ru3(CO)12 was increased to 2, 4 or even 8 mol%, the product yields were 92–95% (Table 1, Runs 4–6). The reaction proceeded more slowly, however, when the amount of Ru3(CO)12 was decreased (0.25 or 0.5 mol%), where 66% and 52% of Et3SiH was found to be unreacted (GC ratio), even after 12 h at 100 °C (Table 1, Runs 1 and 2).

The reaction went more slowly when carried out at 20 °C, 40 °C, 60 °C or 80 °C. Thus, significant amount of Et3SiH was found to be unreacted (82% at 40 °C, 70% at 60 °C, 61% at 80 °C) even being heated for 24 h (Table 1, Runs 10–12). No silyl ester was detected at 20 °C even after 24 h and all of the Et3SiH was recovered (Table 1, Run 9). When the amount of EtI was increased to 8 mol%, the product yields were 94% (Table 1, Run 7). The reaction went more slowly when the amount of EtI was decreased to 2 mol%, where 22% of Et3SiH remained unreacted, even after 12 h at 100 °C (Table 1, Run 8).

Dehydrosilylation in different solvents was also investigated (Table 2). In xylene, ethylbenzene, tert-butylbenzene, mesitylene, n-octane, diethylene glycol diethyl ether, and anisole, the dehydrogenative coupling is slightly slower compared with toluene, and some amount of Et3SiH was detected (12–22%) (Table 2, Runs 2–8). In N,N-dimethylformamide (DMF) and N,N-dimethylacetamide (DMAc), the dehydrocoupling failed to reach completion being heated at 100 °C for 48 h, and significant amounts of Et3SiH were detected (Table 2, Runs 9 and 10).

Table 2: Ru3(CO)12-catalyzed dehydrocoupling of propionic acid with triethylsilane in different solvents.

Run Solvent Time (h) GC ratio (%)
      HSiEt3 CH3CH2CO2SiEt3
1 Toluene 8 0 100
2 n-Octane 24 22 78
3 Xylene 24 17 83
4 Ethylbenzene 24 15 85
5 tert-Butylbenzene 24 14 86
6 Mesitylene 24 12 88
7 Anisole 24 14 86
8 Diethylene glycol diethyl ether 24 20 80
9 DMF 24 67 33
10 DMAc 24 61 39

Other Ru complexes were also tested as catalysts for the dehydrogenative coupling and the results were summarized in Table 3 (usually at 1 mol% of Ru complex, 4 mol% EtI, toluene, 100 °C). In the case of using [RuCl2(CO)3]2, RuCl2(CO)2(PPh3)2, Ru(acac)3, RuCl2(2,2′-bipy)3 and RuCl2(PPh3)3 as catalysts, 9–27% of Et3SiH was still detected after heating for 24 h at 100 °C (Table 3, Runs 4–8). In the presence of 4 mol% of ethyl bromide, the dehydrogenation was slightly slower compared with EtI, and a small amount of Et3SiH was still found. Without EtI, the dehydrocoupling was sluggish and 81% of Et3SiH were detected even being heated for 24 h at 100 °C (Table 3, Run 3).

Table 3: Catalyst-screening for the dehydrocoupling of propionic acid with triethylsilane in toluene at 100 °C.

Run Catalyst Time (h) GC ratio (%)
      HSiEt3 CH3CH2CO2SiEt3
1 Ru3(CO)12 8 0 100a
2 Ru3(CO)12 8 9 91b
3 Ru3(CO)12 24 81 19c
4 [RuCl2(CO)3]2 24 9 11a
5 RuCl2(CO)2 (PPh3)2 24 11 86a
6 RuCl2(PPh3)3 24 10 84a
7 Ru(acac)3 24 27 73a
8 RuCl2(2,2′-bipy)3 6H2O 24 25 75a

aAdditive: 4 mol% EtI, bAdditive: 4 mol% EtBr, cno Additive.

Treatment of a number of carboxylic acids and silanes such as triethylsilane, tri-n-propylsilane (n-Pr3SiH), tri-iso-propylsilane (iso-Pr3SiH), tri-n-butylsilane (n-Bu3SiH) or tert-butyldimethylsilane (tert-BuMe2SiH) afforded the corresponding silyl esters in good and excellent yields (all with 1 mol% Ru3(CO)12 and 4 mol% EtI in toluene at 100 °C, Table 4). In the case of nitro-, bromo- and chlorobenzoic acid, the expected silyl esters were obtained in 85–95% yields, free of dehalogenated or over-reduced by-products (Table 4, Runs 12–16 and 23).

Table 4: Ru3(CO)12-catalyzed dehydrocoupling of carboxylic acids with silanesa.

Run Acid Silane Time (h) Product Yield (%)b
1 CH3CO2H Et3SiH 8 CH3CO2SiEt3 94 [30]
2 CH3CO2H (n-Pr)3SiH 8 CH3CO2SiPrn3 92 [48]
3 CH3CO2H (n-Bu)3SiH 8 CH3CO2SiBun3 93 [48]
4 CH3CH2CO2H Et3SiH 8 CH3CH2CO2SiEt3 95 [28]
5 CH3CH2CO2H (n-Pr)3SiH 8 CH3CH2CO2SiPrn3 89 [48]
6 CH3CH2CO2H (n-Bu)3SiH 8 CH3CH2CO2SiBun3 91 [49]
7 CH3(CH2)8CO2H (iso-Pr)3SiH 9 CH3(CH2)8CO2SiPri3 90 [18]
8 C6H5CH2CO2H Et3SiH 8 C6H5CH2CO2SiEt3 92 [28]
9 C6H5CH2CO2H (iso-Pr)3SiH 9 C6H5CH2CO2SiPri3 93 [18]
10 C6H5CH2CO2H tert-BuMe2SiH 10 C6H5CH2CO2SiMe2But 85 [18]
11 C6H5CH(Me)CO2H (iso-Pr)3SiH 9 C6H5CH(Me)CO2SiPri3 92 [18]
12 3-BrC6H4CO2H (iso-Pr)3SiH 8 3-BrC6H4CO2SiPri3 92 [50]
13 3-BrC6H4CO2H tert-BuMe2SiH 10 3-BrC6H4CO2SiMe2But 86 [50]
14 3-ClC6H4CO2H (iso-Pr)3SiH 8 3-ClC6H4CO2SiPri3 91 [50]
15 3-ClC6H4CO2H tert-BuMe2SiH 10 3-ClC6H4CO2SiMe2But 85 [50]
16 4-ClC6H4CO2H Et3SiH 8 4-ClC6H4CO2SiEt3 91 [51]
17 C6H5CO2H Et3SiH 8 C6H5CO2SiEt3 93 [52]
18 C6H5CO2H (n-Pr)3SiH 8 C6H5CO2SiPrn3 92 [53]
19 C6H5CO2H (iso-Pr)3SiH 9 C6H5CO2SiPri3 95 [18]
20 C6H5CO2H (n-Bu)3SiH 8 C6H5CO2SiBun3 91 [54]
21 [Graphic 1] Et3SiH 8 [Graphic 2] 94 [55]
22 [Graphic 3] (iso-Pr)3SiH 9 [Graphic 4] 93 [18]
23 4-O2NC6H4CO2H tert-BuMe2SiH 10 4-O2NC6H4CO2SiMe2But 88 [56]

aCarboxylic acid (20 mmol), silane (20 mmol), Ru3(CO)12 (0.2 mmol, 1 mol%), EtI (4 mol%), 100 °C. bIsolated yield.

Conclusion

In conclusion, we have demonstrated that Ru3(CO)12/EtI is an efficient catalytic system for the dehydrogenative cross-coupling of carboxylic acids with silanes. The dehydrogenative cross-coupling reactions proceed efficiently to give the corresponding silyl esters in good and excellent yields. No over-reduced silyl esters are formed in the case of coupling nitro-, bromo-, and chlorobenzoic acid with silanes. We believe that the Ru3(CO)12/EtI-catalyzed dehydrosilylation of carboxylic acids with silanes provides another important protocol for a one-step, highly selective, atom-economical and efficient synthetic method. We are currently broadening the scope of this dehydrosilylation of carboxylic acids and silanes in our laboratory and the results will be published elsewhere.

Experimental

To a mixture of propionic acid (40 mmol, 2.96 g), and triethylsilane (40 mmol, 4.64 g) in toluene (20 ml) was added Ru3(CO)12 (0.4 mmol, 0.01 equiv) and EtI (2.0 mmol, 0.05 equiv) at room temperature under a nitrogen atmosphere. The reaction mixture was stirred at 100 °C for 8 hours (monitored by GC). The desired triethylsilyl propionate was obtained as a colourless oil (yield: 95%) after distillation under reduced pressure (Table 1, Run 3). Triethylsilyl propionate [29]: IR (neat): 686, 742, 826, 995, 1063, 1240, 1410, 1466, 1718, 2872, 2952 cm−1. 1H NMR (400 MHz, CDCl3): δ 0.74 (6H, q, 3J 7.8 Hz), 0.95 (9H, t, 3J 7.8 Hz), 1.14 (3H, t, 3J 7.6 Hz), 2.36 (2H, q, 3J 7.6 Hz). 13C NMR (100 MHz, CDCl3): 4.46, 6.48, 9.32, 28.44, 175.26.

All of the silyl esters are known compounds and were compared with authentic samples [prepared by cross-coupling of carboxylic acids and chlorosilanes in the presence of a base such as triethylamine or imidazole (tert-butylsilyl esters) in dichloromethane] and were identified on the basis of their IR, 1H NMR, 13C NMR and GC-MS spectral data.

References

  1. Cazacu, M.; Munteanu, G.; Racles, C.; Vlad, A.; Marcu, M. J. Organomet. Chem. 2006, 691, 3700–3707. doi:10.1016/j.jorganchem.2006.05.026
    Return to citation in text: [1]
  2. Peppas, N. A.; Langer, R. Science 1994, 263, 1715–1720. doi:10.1126/science.8134835
    Return to citation in text: [1] [2]
  3. Langer, R. Acc. Chem. Res. 1993, 26, 537–542. doi:10.1021/ar00034a004
    Return to citation in text: [1] [2]
  4. Swift, G. Acc. Chem. Res. 1993, 26, 105–110. doi:10.1021/ar00027a005
    Return to citation in text: [1] [2]
  5. Wang, M.; Gan, D.; Wooley, K. L. Macromolecules 2001, 34, 3215–3223. doi:10.1021/ma0100450
    Return to citation in text: [1]
  6. Lim, Y.; Choi, Y. H.; Park, J. J. Am. Chem. Soc. 1999, 121, 5633–5639. doi:10.1021/ja984012k
    Return to citation in text: [1]
  7. Wang, M.; Weinberg, J. M.; Wooley, K. L. Macromolecules 1998, 31, 7606–7612. doi:10.1021/ma9808981
    Return to citation in text: [1] [2]
  8. Penco, M.; Marcioni, S.; Ferruti, P.; D'Antone, S.; Deghenghi, R. Biomaterials 1996, 17, 1583–1590. doi:10.1016/0142-9612(95)00323-1
    Return to citation in text: [1]
  9. Haslam, E. Tetrahedron 1980, 36, 2409–2433. doi:10.1016/0040-4020(80)80219-5
    Return to citation in text: [1]
  10. Cunico, R. F.; Bedell, L. J. Org. Chem. 1980, 45, 4797–4798. doi:10.1021/jo01311a058
    Return to citation in text: [1]
  11. Gilding, D. K.; Reed, A. M. Polymer 1979, 20, 1459–1464. doi:10.1016/0032-3861(79)90009-0
    Return to citation in text: [1]
  12. Kayan, A.; Hoebbel, D.; Schmidt, H. J. Appl. Polym. Sci. 2005, 95, 790–796. doi:10.1002/app.21315
    Return to citation in text: [1]
  13. Jaoui, M.; Kleindienst, T. E.; Lewandowski, M.; Edney, E. O. Anal. Chem. 2004, 76, 4765–4778. doi:10.1021/ac049919h
    Return to citation in text: [1]
  14. Pierce, A. E. Silylation of Organic Compounds; Pierce Chem. Co.: Rockford, Illinois, 1968.
    Return to citation in text: [1]
  15. Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis, 3rd ed.; Wiley and Sons: New York, 1999.
    Return to citation in text: [1]
  16. Kocieński, P. J. Protecting Groups; George Thieme Verlag: New York, 1999.
    Return to citation in text: [1]
  17. Oyama, K.; Kondo, T. Org. Lett. 2003, 5, 209–212. doi:10.1021/ol027263d
    Return to citation in text: [1]
  18. Lee, A. S.-Y.; Su, F.-Y. Tetrahedron Lett. 2005, 46, 6305–6309. doi:10.1016/j.tetlet.2005.07.049
    Return to citation in text: [1] [2] [3] [4] [5] [6] [7]
  19. Heldmann, D. K.; Stohrer, J.; Zauner, R. Synlett 2002, 1919–1921. doi:10.1055/s-2002-34898
    Return to citation in text: [1]
  20. Uchiyama, N.; Akiyama, H. Jpn. Kokai Tokkyo Koho JP 200467579, 2004.
    Chem. Abstr. 2004, 140, 199907.
    Return to citation in text: [1]
  21. Masuoka, S.; Ito, M.; Honda, Y. Production of polymerizable monomer. JP 04342593 A, Nov 30, 1992.
    Chem. Abstr. 1993, 118, 192474.
    Return to citation in text: [1]
  22. Mbah, G. C.; Speier, J. L. J. Organomet. Chem. 1984, 271, 77–82. doi:10.1016/0022-328X(84)85165-7
    Return to citation in text: [1]
  23. Eaborn, C.; Happer, D. A. R.; Hopper, S. P.; Safa, K. D. J. Organomet. Chem. 1980, 188, 179–192. doi:10.1016/S0022-328X(00)82811-9
    Return to citation in text: [1]
  24. Jaspars, M. Silyl Esters. In Compounds of Group 15 (As, Sb, Bi) and Silicon Compounds; Fleming, I., Ed.; Science of Synthesis, Vol. 4; Thieme: Stuttgart, 2001; pp 293–304.
    For a review.
    Return to citation in text: [1]
  25. Masaoka, S.; Banno, T. Jpn. Kokai Tokkyo Koho JP 2004182681, 2004.
    Chem. Abstr. 2004, 141, 54484.
    Return to citation in text: [1]
  26. Kubota, Y.; Kubota, T. Jpn. Kokai Tokkyo Koho JP 2004210644, 2004.
    Chem. Abstr. 2004, 141, 140615.
    Return to citation in text: [1] [2]
  27. Gauvin, F.; Harrod, J. F.; Woo, H. G. Catalytic Dehydrocoupling: A General Strategy for the Formation of Element-Element Bonds. In Advances in Organometallic Chemistry; Stone, F. G. A.; West, R., Eds.; Academic Press: New York, 1998; Vol. 42.
    Return to citation in text: [1]
  28. Huang, X.; Craita, C.; Awad, L.; Vogel, P. Chem. Commun. 2005, 1297–1299. doi:10.1039/b417894g
    Return to citation in text: [1] [2] [3]
  29. Liu, G.-B. Synlett 2006, 1431–1433. doi:10.1055/s-2006-941576
    Return to citation in text: [1] [2]
  30. Chauhan, M.; Chauhan, B. P. S.; Boudjouk, P. Org. Lett. 2000, 2, 1027–1029. doi:10.1021/ol005507t
    Return to citation in text: [1] [2]
  31. Li, Y.; Kawakami, Y. Macromolecules 1999, 32, 8768–8773. doi:10.1021/ma991312t
    Return to citation in text: [1]
  32. Iovel, I.; Popelis, J.; Gaukhman, A.; Lukevics, E. J. Organomet. Chem. 1998, 559, 123–130. doi:10.1016/S0022-328X(98)00431-8
    Return to citation in text: [1]
  33. Fujino, J.; Taniguchi, H.; Mori, K.; Funaoka, S.; Ito, M. Jpn. Kokai Tokkyo Koho JP 10212293, 1998.
    Chem. Abstr. 1998, 129, 216765.
    Return to citation in text: [1]
  34. Schubert, U.; Lorenz, C. Inorg. Chem. 1997, 36, 1258–1259. doi:10.1021/ic961134+
    Return to citation in text: [1] [2]
  35. Masuoka, S.; Ito, M.; Honda, Y. Jpn. Kokai Tokkyo Koho JP 05025187, 1993.
    Chem. Abstr. 1993, 119, 75081.
    Return to citation in text: [1]
  36. Masuoka, S.; Ito, M.; Honda, Y. Jpn. Kokai Tokkyo Koho JP 04342593, 1992.
    Chem. Abstr. 1993, 118, 192474.
    Return to citation in text: [1] [2]
  37. Aizpurua, J. M.; Palomo, C.; Palomo, A. L. Can. J. Chem. 1984, 62, 336–340. doi:10.1139/v84-059
    Return to citation in text: [1] [2]
  38. Aizpurua, J. M.; Palomo, C. Bull. Soc. Chim. Fr. 1982, II-265–II-268.
    Return to citation in text: [1] [2]
  39. Morita, T.; Okamoto, Y.; Sakurai, H. Synthesis 1981, 745–746. doi:10.1055/s-1981-29588
    Return to citation in text: [1] [2]
  40. Morita, T.; Okamoto, Y.; Sakurai, H. Tetrahedron Lett. 1980, 21, 835–838. doi:10.1016/S0040-4039(00)71518-8
    Return to citation in text: [1] [2]
  41. Palomo, C. Synthesis 1981, 809–811. doi:10.1055/s-1981-29606
    Return to citation in text: [1] [2]
  42. Haslam, E. Tetrahedron 1980, 36, 2409–2433. doi:10.1016/0040-4020(80)80219-5
    Return to citation in text: [1] [2]
  43. Sauer, R. O.; Patnode, W. J. Am. Chem. Soc. 1945, 67, 1548–1549. doi:10.1021/ja01225a046
    Return to citation in text: [1] [2]
  44. Yamamoto, K.; Takemae, M. Bull. Chem. Soc. Jpn. 1989, 62, 2111–2113. doi:10.1246/bcsj.62.2111
    Return to citation in text: [1]
  45. Corriu, R. J. P.; Moreau, J. J. E.; Praet, H. Organometallics 1990, 9, 2086–2091. doi:10.1021/om00157a017
    Return to citation in text: [1]
  46. Liu, G.-B.; Zhao, H.-Y.; Thiemann, T. Synth. Commun. 2007, 37, 2717–2727. doi:10.1080/00397910701465669
    Return to citation in text: [1]
  47. Liu, G.-B.; Zhao, H.-Y.; Thiemann, T. Adv. Synth. Catal. 2007, 349, 807–811. doi:10.1002/adsc.200600338
    Return to citation in text: [1]
  48. Prince, R. H.; Timms, R. E. Inorg. Chim. Acta 1968, 2, 260–262. doi:10.1016/S0020-1693(00)87038-3
    Return to citation in text: [1] [2] [3]
  49. Masuoka, S.; Matsubara, Y.; Mori, K.; Oka, M. Antifouling coating material, antifouling coating film, submerged structure, and antifouling method. PCT Int. Appl. WO 01/81489 A1, Nov 1, 2001.
    Chem. Abstr. 2001, 135, 345937.
    Return to citation in text: [1]
  50. Iranpoor, N.; Firouzabadi, H.; Shaterian, H. R. Synth. Commun. 2002, 32, 3653–3657. doi:10.1081/SCC-120014983
    Return to citation in text: [1] [2] [3] [4]
  51. Orlov, N. F.; Slesar, L. N. J. Gen. Chem. USSR 1966, 36, 1093–1097.
    Return to citation in text: [1]
  52. Voronkov, M. G.; Pukhnarevich, V. B.; Ushakova, N. I.; Burnashova, T. D.; Tsykhanskaya, I. I.; Koval'skaya, N. B. Zh. Obshch. Khim. 1990, 60, 1584–1587.
    Chem. Abstr. 1991, 114, 81153.
    Return to citation in text: [1]
  53. Frainnet, É.; Paul, M. C. R. Seances Acad. Sci., Ser. C 1967, 265, 1185–1188.
    Chem. Abstr. 1968, 68, 59653.
    Return to citation in text: [1]
  54. Biryukov, I. P.; Khudobin, Yu. I.; Kharitonov, N. P.; Yazov, A. N. Zh. Fiz. Khim. 1977, 51, 2111–2113.
    Chem. Abstr. 1977, 87, 167048.
    Return to citation in text: [1]
  55. Firouzabadi, H.; Iranpoor, N.; Shaterian, H. R. Phosphorus, Sulfur Silicon Relat. Elem. 2000, 166, 71–81. doi:10.1080/10426500008076532
    Return to citation in text: [1]
  56. Mai, K.; Patil, G. J. Org. Chem. 1986, 51, 3545–3548. doi:10.1021/jo00368a030
    Return to citation in text: [1]
Other Beilstein-Institut Open Science Activities