Supporting Information
Supporting information features experimental procedures and spectroscopic analysis for compounds 3a–3g coupling reactions.
Supporting Information File 1: Experimental and spectroscopic data for: Green oxidations: Titanium dioxide induced tandem oxidation | ||
Format: DOC | Size: 740.0 KB | Download |
Cite the Following Article
Green oxidations: Titanium dioxide induced tandem oxidation coupling reactions
Vineet Jeena and Ross S. Robinson
Beilstein J. Org. Chem. 2009, 5, No. 24.
https://doi.org/10.3762/bjoc.5.24
How to Cite
Jeena, V.; Robinson, R. S. Beilstein J. Org. Chem. 2009, 5, No. 24. doi:10.3762/bjoc.5.24
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Shukla, M.; Narain, S.; Kumar, A.; Dikshit, A. Characterization of titanium dioxide nanomaterials synthesized from leaf extract of Pogostemon cablin Benth and their potential antifungal activity. Physica Scripta 2024, 99, 659d3–0659d3. doi:10.1088/1402-4896/ad4dea
- Godino-Ojer, M.; Morales-Torres, S.; Maldonado-Hódar, F. J.; Pérez-Mayoral, E. Towards selective synthesis of quinoxalines by using transition metals-doped carbon aerogels. Catalysis Today 2023, 423, 114014. doi:10.1016/j.cattod.2023.01.021
- Leifert, D.; Studer, A. Organic Synthesis Using Nitroxides. Chemical reviews 2023, 123, 10302–10380. doi:10.1021/acs.chemrev.3c00212
- kermani, s. a.; Salari, S.; Almani, P. G. N. Comparison of antifungal and cytotoxicity activities of titanium dioxide and zinc oxide nanoparticles with amphotericin B against different Candida species: In vitro evaluation. Journal of clinical laboratory analysis 2020, 35, e23577. doi:10.1002/jcla.23577
- Patil, M. U.; Shinde, S. K.; Patil, S. P.; Patil, S. S. [BBSA-DBN][HSO4]: a novel –SO3H functionalized Bronsted acidic ionic liquid for easy access of quinoxalines. Research on Chemical Intermediates 2020, 46, 4923–4938. doi:10.1007/s11164-020-04227-3
- Zhang, H.; Shen, J.; Yang, Z.; Cui, X. PIDA-mediated intramolecular oxidative C–N bond formation for the direct synthesis of quinoxalines from enaminones. RSC advances 2019, 9, 7718–7722. doi:10.1039/c9ra01200a
- Wang, H.; Yang, Q.; Song, Y.; Wang, Y. Thermodynamic Analysis and Experimental Study of Selective Dehydrogenation of 1,2-cyclohexanediol over Cu2+1O/MgO Catalysts. Sustainability 2019, 11, 902. doi:10.3390/su11030902
- Saha, B.; Mitra, B.; Brahmin, D.; Sinha, B.; Ghosh, P. 2-Iodo benzoic acid: An unconventional precursor for the one pot multi-component synthesis of quinoxaline using organo Cu (II) catalyst. Tetrahedron Letters 2018, 59, 3657–3663. doi:10.1016/j.tetlet.2018.08.051
- Lang, X.; Zhao, J. Integrating TEMPO and Its Analogues with Visible-Light Photocatalysis. Chemistry, an Asian journal 2018, 13, 599–613. doi:10.1002/asia.201701765
- Hazarika, D.; Phukan, P. Metal free synthesis of quinoxalines from alkynes via a cascade process using TsNBr2. Tetrahedron 2017, 73, 1374–1379. doi:10.1016/j.tet.2017.01.056
- Guntreddi, T.; Vanjari, R.; Kumar, S.; Singh, R.; Singh, N.; Kumar, P.; Singh, K. N. Elemental sulfur mediated synthesis of benzoxazoles, benzothiazoles and quinoxalines via decarboxylative coupling of 2-hydroxy/mercapto/amino-anilines with cinnamic acids. RSC Advances 2016, 6, 81013–81016. doi:10.1039/c6ra17491d
- Jeena, V.; Sithebe, S.; Robinson, R. S. Copper-Catalyzed Synthesis of Valuable Heterocyclic Compounds Using a Tandem Oxidation Process Approach. Synthetic Communications 2015, 45, 1484–1491. doi:10.1080/00397911.2015.1022660
- Kamal, A.; Babu, K. S.; Hussaini, S. A.; Mahesh, R.; Alarifi, A. Amberlite IR-120H, an efficient and recyclable solid phase catalyst for the synthesis of quinoxalines: a greener approach. Tetrahedron Letters 2015, 56, 2803–2808. doi:10.1016/j.tetlet.2015.04.046
- Jayabharathi, J.; Ramanathan, P.; Thanikachalam, V. Synthesis and optical properties of phenanthromidazole derivatives for organic electroluminescent devices. New Journal of Chemistry 2015, 39, 142–154. doi:10.1039/c4nj01515k
- Vadagaonkar, K. S.; Kalmode, H. P.; Murugan, K.; Chaskar, A. C. I2 catalyzed tandem protocol for synthesis of quinoxalines via sp3, sp2 and sp C–H functionalization. RSC Advances 2015, 5, 5580–5590. doi:10.1039/c4ra08589b
- Jeena, V.; Robinson, R. S. Recent developments in one-pot tandem oxidation process coupling reactions. RSC Adv. 2014, 4, 40720–40739. doi:10.1039/c4ra06169a
- Thanikachalam, V.; Arunpandiyan, A.; Jayabharathi, J.; Karunakaran, C.; Ramanathan, P. Nano rutile TiO2 catalysed synthesis of (E)-4-(2-(1-(4-chlorophenyl)-1H-phenanthro[9,10-d]imidazol-2-yl)vinyl)-N,N-dimethylaniline and its interaction with super paramagnetic nanoparticles. RSC Adv. 2014, 4, 62144–62152. doi:10.1039/c4ra10686e
- Jeena, V.; Robinson, R. S. An environmentally friendly, cost effective synthesis of quinoxalines: the influence of microwave reaction conditions. Tetrahedron Letters 2014, 55, 642–645. doi:10.1016/j.tetlet.2013.11.100
- Aghapoor, K.; Mohsenzadeh, F.; Morad, M. M.; Darabi, H. R. Sustainable approach to tandem catalysis: Expedient access to quinoxalines and pyrido[2,3-b]pyrazines from α-hydroxyketones via microwave-induced [(NH4)6Mo7O24·4H2O – PEG 300] polar paste catalyst system. Comptes Rendus. Chimie 2012, 15, 764–767. doi:10.1016/j.crci.2012.06.007
- Kumbhar, A.; Kamble, S.; Barge, M.; Rashinkar, G.; Salunkhe, R. Brönsted acid hydrotrope combined catalyst for environmentally benign synthesis of quinoxalines and pyrido[2,3-b]pyrazines in aqueous medium. Tetrahedron Letters 2012, 53, 2756–2760. doi:10.1016/j.tetlet.2012.03.097