Supporting Information
Spectra for compounds made in this manuscript are available as supporting information.
Supporting Information File 1: NMR spectra of compounds 1d, 2j, 3c, 3d, 3f, 4c and 4e–j. | ||
Format: PDF | Size: 8.2 MB | Download |
Cite the Following Article
Gold film-catalysed benzannulation by Microwave-Assisted, Continuous Flow Organic Synthesis (MACOS)
Gjergji Shore, Michael Tsimerman and Michael G. Organ
Beilstein J. Org. Chem. 2009, 5, No. 35.
https://doi.org/10.3762/bjoc.5.35
How to Cite
Shore, G.; Tsimerman, M.; Organ, M. G. Beilstein J. Org. Chem. 2009, 5, No. 35. doi:10.3762/bjoc.5.35
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Damera, T.; Pagadala, R.; Rana, S.; Jonnalagadda, S. B. A Concise Review of Multicomponent Reactions Using Novel Heterogeneous Catalysts under Microwave Irradiation. Catalysts 2023, 13, 1034. doi:10.3390/catal13071034
- Mohammadzadeh, A.; Sharif, S.; Semeniuchenko, V.; Townsend, N.; Corbett, A. D.; Organ, M. G. Lithium aluminum hydride in flow: overcoming exotherms, solids, and gas evolution en route to chemoselective reductions. Journal of Flow Chemistry 2021, 12, 131–140. doi:10.1007/s41981-021-00201-1
- Mohammadzadeh, A.; Sharif, S.; Semeniuchenko, V.; Townsend, N.; Corbett, A. D.; Organ, M. G. Lithium aluminum hydride in flow: overcoming exotherms, solids, and gas evolution en route to chemoselective reductions. Journal of Flow Chemistry 2021, 1–10.
- Neyt, N. C.; Riley, D. L. Application of reactor engineering concepts in continuous flow chemistry: a review. Reaction Chemistry & Engineering 2021, 6, 1295–1326. doi:10.1039/d1re00004g
- García-Lacuna, J.; Domínguez, G.; Pérez-Castells, J. Flow Chemistry for Cycloaddition Reactions. ChemSusChem 2020, 13, 5138–5163. doi:10.1002/cssc.202001372
- Mandoli, A. Catalyst Immobilization; Wiley, 2019; pp 257–306. doi:10.1002/9783527817290.ch8
- Praveen, C. Dexterity of gold catalysis in controlling the regioselectivity of cycloaddition reactions. Catalysis Reviews 2019, 61, 406–446. doi:10.1080/01614940.2019.1594016
- Kwak, J. S.; Zhang, W.; Tsoy, D.; Hunter, H. N.; Mallik, D.; Organ, M. G. A Multiconfiguration Valve for Uninterrupted Sampling from Heterogeneous Slurries: An Application to Flow Chemistry. Organic Process Research & Development 2017, 21, 1051–1058. doi:10.1021/acs.oprd.7b00166
- Teci, M.; Tilley, M.; McGuire, M. A.; Organ, M. G. Using Anilines as Masked Cross-Coupling Partners: Design of a Telescoped Three-Step Flow Diazotization, Iododediazotization, Cross-Coupling Process. Chemistry (Weinheim an der Bergstrasse, Germany) 2016, 22, 17407–17415. doi:10.1002/chem.201603626
- Teci, M.; Tilley, M.; McGuire, M. A.; Organ, M. G. Handling Hazards Using Continuous Flow Chemistry: Synthesis of N1-Aryl-[1,2,3]-triazoles from Anilines via Telescoped Three-Step Diazotization, Azidodediazotization, and [3 + 2] Dipolar Cycloaddition Processes. Organic Process Research & Development 2016, 20, 1967–1973. doi:10.1021/acs.oprd.6b00292
- ŽivkoviĿ, L. A.; NikaĿeviĿ, N. M. A method for reactor synthesis based on process intensification principles and optimization of superstructure consisting of phenomenological modules. Chemical Engineering Research and Design 2016, 113, 189–205. doi:10.1016/j.cherd.2016.07.008
- Boyarskiy, V. P.; Ryabukhin, D. S.; Bokach, N. A.; Vasilyev, A. V. Alkenylation of Arenes and Heteroarenes with Alkynes. Chemical reviews 2016, 116, 5894–5986. doi:10.1021/acs.chemrev.5b00514
- Price, G. A.; Bogdan, A.; Aguirre, A. L.; Iwai, T.; Djuric, S. W.; Organ, M. G. Continuous flow Negishi cross-couplings employing silica-supported Pd-PEPPSI–IPr precatalyst. Catalysis Science & Technology 2016, 6, 4733–4742. doi:10.1039/c6cy00331a
- Benaskar, F.; Patil, N.; Rebrov, V.; Schouten, J. J.; Hessel, V. Microwaves in Catalysis; Wiley, 2015; pp 111–140. doi:10.1002/9783527688111.ch6
- Rathi, A. K.; Gawande, M. B.; Zboril, R.; Varma, R. S. Microwave-assisted synthesis – Catalytic applications in aqueous media. Coordination Chemistry Reviews 2015, 291, 68–94. doi:10.1016/j.ccr.2015.01.011
- Deadman, B. J.; Collins, S. G.; Maguire, A. R. Taming hazardous chemistry in flow: the continuous processing of diazo and diazonium compounds. Chemistry (Weinheim an der Bergstrasse, Germany) 2014, 21, 2298–2308. doi:10.1002/chem.201404348
- Manvar, A.; Shah, A. Continuous Flow and Microwave‐Assisted Vorbrüggen Glycosylations: Historical Perspective to High‐Throughput Strategies. Asian Journal of Organic Chemistry 2014, 3, 1134–1149. doi:10.1002/ajoc.201402119
- Leadbeater, N. 9.10 Organic Synthesis Using Microwave Heating. Comprehensive Organic Synthesis II; Elsevier, 2014; pp 234–286. doi:10.1016/b978-0-08-097742-3.00920-4
- Sauks, J. M.; Mallik, D.; Lawryshyn, Y.; Bender, T. P.; Organ, M. G. A Continuous-Flow Microwave Reactor for Conducting High-Temperature and High-Pressure Chemical Reactions. Organic Process Research & Development 2013, 18, 1310–1314. doi:10.1021/op400026g
- Ricciardi, R.; Huskens, J.; Verboom, W. Heterogeneous acid catalysis using a perfluorosulfonic-acid monolayer-functionalized microreactor. Journal of Flow Chemistry 2013, 3, 127–131. doi:10.1556/jfc-d-13-00024