Acid-mediated reactions under microfluidic conditions: A new strategy for practical synthesis of biofunctional natural products

Katsunori Tanaka and Koichi Fukase
Beilstein J. Org. Chem. 2009, 5, No. 40. https://doi.org/10.3762/bjoc.5.40

Cite the Following Article

Acid-mediated reactions under microfluidic conditions: A new strategy for practical synthesis of biofunctional natural products
Katsunori Tanaka and Koichi Fukase
Beilstein J. Org. Chem. 2009, 5, No. 40. https://doi.org/10.3762/bjoc.5.40

How to Cite

Tanaka, K.; Fukase, K. Beilstein J. Org. Chem. 2009, 5, No. 40. doi:10.3762/bjoc.5.40

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Zhang, Y.-Y.; Ghirardello, M.; Williams, R.; Diaz, A. S.; Rojo, J.; Voglmeir, J.; Ramos-Soriano, J.; Galan, M. C. Microfluidics-Based Ionic Catch and Release Oligosaccharide Synthesis (ICROS-Microflow) to Expedite Glycosylation Chemistry. JACS Au 2024, 4, 4328–4333. doi:10.1021/jacsau.4c00686
  • Myachin, I. V.; Kononov, L. O. Mixer Design and Flow Rate as Critical Variables in Flow Chemistry Affecting the Outcome of a Chemical Reaction: A Review. Inventions 2023, 8, 128. doi:10.3390/inventions8050128
  • Myachin, I. V.; Kononov, L. O. Phase-Transfer Catalyzed Microfluidic Glycosylation: A Small Change in Concentration Results in a Dramatic Increase in Stereoselectivity. Catalysts 2023, 13, 313. doi:10.3390/catal13020313
  • Myachin, I. V.; Mamirgova, Z. Z.; Stepanova, E. V.; Zinin, A. I.; Chizhov, A. O.; Kononov, L. O. Black Swan in Phase Transfer Catalysis: Influence of Mixing Mode on the Stereoselectivity of Glycosylation. European Journal of Organic Chemistry 2022, 2022. doi:10.1002/ejoc.202101377
  • Karak, M.; Haldar, A.; Torikai, K. Current Tools for Chemical Glycosylation: Where Are We Now?. Trends in Glycoscience and Glycotechnology 2021, 33, E115–E123. doi:10.4052/tigg.2014.7e
  • Milandip, K.; Animeshchandra, H.; 浩平, 鳥. 化学的グリコシル化のための最新ツール:我々は、今どこまで来ているか?. Trends in Glycoscience and Glycotechnology 2021, 33, J115–J123. doi:10.4052/tigg.2014.7j
  • Myachin, I. V.; Orlova, A. V.; Kononov, L. O. Glycosylation in flow: effect of the flow rate and type of the mixer. Russian Chemical Bulletin 2019, 68, 2126–2129. doi:10.1007/s11172-019-2677-y
  • Ji, P.; Feng, X.; Oliveres, P.; Li, Z.; Murakami, A.; Wang, C.; Lin, W. STRONGLY LEWIS ACIDIC METAL-ORGANIC FRAMEWORKS FOR CONTINUOUS FLOW CATALYSIS. Journal of the American Chemical Society 2019, 141, 14878–14888. doi:10.1021/jacs.9b07891
  • Hoffmeyer, P.; Schneider, C. Continuous Flow Synthesis of Highly Substituted Tetrahydrofurans. European Journal of Organic Chemistry 2019, 2019, 5326–5333. doi:10.1002/ejoc.201900421
  • Moon, S.; Gilmore, K.; Seeberger, P. H. Flow Chemistry in Organic Synthesis; Georg Thieme Verlag KG, 2018; pp 399–428. doi:10.1055/sos-sd-228-00279
  • Nagasaki, M.; Manabe, Y.; Minamoto, N.; Tanaka, K.; Silipo, A.; Molinaro, A.; Fukase, K. Chemical Synthesis of a Complex-Type N-Glycan Containing a Core Fucose. The Journal of organic chemistry 2016, 81, 10600–10616. doi:10.1021/acs.joc.6b02106
  • Fukase, K.; Tanaka, K.; Fujimoto, Y.; Shimoyama, A.; Manabe, Y. Glycochemical Synthesis; Wiley, 2016; pp 205–219. doi:10.1002/9781119006435.ch8
  • Kononov, L. O. Chemical reactivity and solution structure: on the way to a paradigm shift?. RSC Advances 2015, 5, 46718–46734. doi:10.1039/c4ra17257d
  • Fukase, K.; Shimoyama, A.; Manabe, Y. Effective Synthesis of Oligosaccharide under Microfluidic Conditions. Journal of Synthetic Organic Chemistry, Japan 2015, 73, 452–459. doi:10.5059/yukigoseikyokaishi.73.452
  • Trojanowicz, M. Flow Analysis as Advanced Branch of Flow Chemistry. Modern Chemistry & Applications 2013, 1, 1–9. doi:10.4172/2329-6798.1000104
  • Rueping, M.; Bootwicha, T.; Sugiono, E. Continuous-flow catalytic asymmetric hydrogenations: Reaction optimization using FTIR inline analysis. Beilstein journal of organic chemistry 2012, 8, 300–307. doi:10.3762/bjoc.8.32
  • Tanaka, K.; Fukase, K. Solid‐Phase Organic Synthesis; Wiley, 2011; pp 489–530. doi:10.1002/9781118141649.ch16
  • Uchinashi, Y.; Nagasaki, M.; Zhou, J.; Tanaka, K.; Fukase, K. Reinvestigation of the C5-acetamide sialic acid donor for α-selective sialylation: practical procedure under microfluidic conditions. Organic & biomolecular chemistry 2011, 9, 7243–7248. doi:10.1039/c1ob06164j
  • Maurya, R. A.; Park, C. P.; Kim, D.-P. Triple-channel microreactor for biphasic gas–liquid reactions: Photosensitized oxygenations. Beilstein journal of organic chemistry 2011, 7, 1158–1163. doi:10.3762/bjoc.7.134
  • Saito, K.; Ueoka, K.; Matsumoto, K.; Suga, S.; Nokami, T.; Yoshida, J.-i. Indirect cation-flow method: flash generation of alkoxycarbenium ions and studies on the stability of glycosyl cations. Angewandte Chemie (International ed. in English) 2011, 50, 5153–5156. doi:10.1002/anie.201100854

Patents

  • LIN WENBIN; FENG XUANYU; JI PENGFEI. Strongly Lewis acidic metal-organic frameworks for continuous flow catalysis. US 12042788 B2, July 23, 2024.
Other Beilstein-Institut Open Science Activities