Versatile supramolecular reactivity of zinc-tetra(4-pyridyl)porphyrin in crystalline solids: Polymeric grids with zinc dichloride and hydrogen-bonded networks with mellitic acid

Sophia Lipstman and Israel Goldberg
Beilstein J. Org. Chem. 2009, 5, No. 77. https://doi.org/10.3762/bjoc.5.77

Supporting Information

Supporting information features X-ray data for compounds I and II.

Supporting Information File 1: X-ray data for compound I.
Format: CIF Size: 26.6 KB Download
Supporting Information File 2: X-ray data for compound II.
Format: CIF Size: 29.0 KB Download

Cite the Following Article

Versatile supramolecular reactivity of zinc-tetra(4-pyridyl)porphyrin in crystalline solids: Polymeric grids with zinc dichloride and hydrogen-bonded networks with mellitic acid
Sophia Lipstman and Israel Goldberg
Beilstein J. Org. Chem. 2009, 5, No. 77. https://doi.org/10.3762/bjoc.5.77

How to Cite

Lipstman, S.; Goldberg, I. Beilstein J. Org. Chem. 2009, 5, No. 77. doi:10.3762/bjoc.5.77

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Yoshinari, N.; Konno, T. Multitopic metal–organic carboxylates available as supramolecular building units. Coordination Chemistry Reviews 2023, 474, 214850. doi:10.1016/j.ccr.2022.214850
  • Flanagan, K. J.; Dominguez, M. P.; Melissari, Z.; Eckhardt, H.-G.; Williams, R. M.; Gibbons, D.; Prior, C.; Locke, G. M.; Meindl, A.; Ryan, A. A.; Senge, M. O. Structural effects of meso-halogenation on porphyrins. Beilstein journal of organic chemistry 2021, 17, 1149–1170. doi:10.3762/bjoc.17.88
  • Saran, N.; Thomas, T. L.; Bhavana, P. Synthesis of coordination polymers of cobalt meso-pyridylporphyrins and its oxygen reduction properties. Journal of Molecular Structure 2021, 1232, 130032. doi:10.1016/j.molstruc.2021.130032
  • Borah, B. P.; Majumder, S.; Borah, K. D.; Bhuyan, J. The quest for a better understanding of ethanol coordination to magnesium and zinc porphyrin: A combined experimental and theoretical study. Journal of Molecular Structure 2021, 1230, 129646. doi:10.1016/j.molstruc.2020.129646
  • Jeoung, S.; Kim, S.; Kim, M.; Moon, H. R. Pore engineering of metal-organic frameworks with coordinating functionalities. Coordination Chemistry Reviews 2020, 420, 213377. doi:10.1016/j.ccr.2020.213377
  • Yang, F.; Hu, W.; Yang, C.; Patrick, M.; Cooksy, A. L.; Zhang, J.; Aguiar, J. A.; Fang, C.; Zhou, Y.; Meng, Y. S.; Huang, J.; Gu, J. Tuning Internal Strain in Metal–Organic Frameworks via Vapor Phase Infiltration for CO2 Reduction. Angewandte Chemie 2020, 132, 4602–4610. doi:10.1002/ange.202000022
  • Yang, F.; Hu, W.; Yang, C.; Patrick, M.; Cooksy, A. L.; Zhang, J.; Aguiar, J. A.; Fang, C.; Zhou, Y.-H.; Meng, Y. S.; Huang, J.; Gu, J. Tuning Internal Strain in Metal–Organic Frameworks via Vapor Phase Infiltration for CO 2 Reduction. Angewandte Chemie (International ed. in English) 2020, 59, 4572–4580. doi:10.1002/anie.202000022
  • Flanagan, K. J.; Twamley, B.; Senge, M. O. Investigating the Impact of Conformational Molecular Engineering on the Crystal Packing of Cavity Forming Porphyrins. Inorganic chemistry 2019, 58, 15769–15787. doi:10.1021/acs.inorgchem.9b01963
  • Mishra, M. K.; Choudhary, H.; Cordes, D. B.; Kelley, S. P.; Rogers, R. D. Structural Diversity in Tetrakis(4-pyridyl)porphyrin Supramolecular Building Blocks. Crystal Growth & Design 2019, 19, 3529–3542. doi:10.1021/acs.cgd.9b00399
  • Shimpi, M. R.; Giri, L.; Pedireddi, V. R. Preparation and Structure Analysis of Three New Copper Complexes of Mellitic Acid With 4,4′-Bipyridine and 1,3-bis(4-pyridyl)Propane. ChemistrySelect 2018, 3, 855–858. doi:10.1002/slct.201702941
  • Morshedi, M.; Ward, J. S.; Kruger, P. E.; White, N. G. Supramolecular frameworks based on 5,10,15,20-tetra(4-carboxyphenyl)porphyrins. Dalton transactions (Cambridge, England : 2003) 2018, 47, 783–790. doi:10.1039/c7dt04162d
  • Solomonov, A. V.; Shipitsyna, M. K.; Vashurin, A. S.; Rumyantsev, E. V.; Timin, A. S.; Ivanov, S. P. Analysis of binding ability of two tetramethylpyridylporphyrins to albumin and its complex with bilirubin. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy 2016, 168, 12–20. doi:10.1016/j.saa.2016.05.044
  • Huh, S.; Kim, S. J.; Kim, Y. Porphyrinic metal–organic frameworks from custom-designed porphyrins. CrystEngComm 2016, 18, 345–368. doi:10.1039/c5ce02106e
  • Gao, W.-Y.; Chrzanowski, M.; Ma, S. Metal–metalloporphyrin frameworks: a resurging class of functional materials. Chemical Society reviews 2014, 43, 5841–5866. doi:10.1039/c4cs00001c
  • Chen, W.; Yamada, Y.; Liu, G.-N.; Kubota, A.; Ichikawa, T.; Kojima, Y.; Guo, G.-C.; Fukuzumi, S. X-Ray crystal structure of [HSm{VIVO(TPPS)}]n and encapsulation of nitrogen molecules in 1-D channels. Dalton transactions (Cambridge, England : 2003) 2011, 40, 12826–12831. doi:10.1039/c1dt10956a
  • Lipstman, S.; Goldberg, I. Versatile Molecular Recognition Features of Tetra(3-pyridyl)porphyrin in Crystal Engineering. Crystal Growth & Design 2010, 10, 4596–4606. doi:10.1021/cg1008973
Other Beilstein-Institut Open Science Activities