Supporting Information
Supporting Information File 1: Procedures and characterization of the new complexes. | ||
Format: PDF | Size: 316.8 KB | Download |
Supporting Information File 2: Cif file of crystal structure of compound 3a. | ||
Format: CIF | Size: 27.8 KB | Download |
Supporting Information File 3: Cif file of crystal structure of compound 3b. | ||
Format: CIF | Size: 12.9 KB | Download |
Cite the Following Article
CAAC Boranes. Synthesis and characterization of cyclic (alkyl) (amino) carbene borane complexes from BF3 and BH3
Julien Monot, Louis Fensterbank, Max Malacria, Emmanuel Lacôte, Steven J. Geib and Dennis P. Curran
Beilstein J. Org. Chem. 2010, 6, 709–712.
https://doi.org/10.3762/bjoc.6.82
How to Cite
Monot, J.; Fensterbank, L.; Malacria, M.; Lacôte, E.; Geib, S. J.; Curran, D. P. Beilstein J. Org. Chem. 2010, 6, 709–712. doi:10.3762/bjoc.6.82
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Sharma, A.; Nair K, U.; Kundu, S. Bicyclic (alkyl)(amino)carbenes (BICAACs): synthesis, characteristics, and applications. Dalton transactions (Cambridge, England : 2003) 2025, 54, 458–476. doi:10.1039/d4dt02696a
- Song, H.; Szymczak, N. K. Lewis Acid‐Tethered (cAAC)—Copper Complexes: Reactivity for Hydride Transfer and Catalytic CO2 Hydrogenation. Angewandte Chemie 2024, 136. doi:10.1002/ange.202411099
- Song, H.; Szymczak, N. K. Lewis Acid-Tethered (cAAC)-Copper Complexes: Reactivity for Hydride Transfer and Catalytic CO2 Hydrogenation. Angewandte Chemie (International ed. in English) 2024, 63, e202411099. doi:10.1002/anie.202411099
- Boisvert, E. Y.; Ramos Castellanos, R.; Ferguson, M. J.; Fogg, D. E. Abstraction of Trifluoroborane from Tetrafluoroborate: Li+‐Assisted Borylation of Nucleophilic Carbenes. ChemCatChem 2024, 16. doi:10.1002/cctc.202401003
- Trujillo‐González, D. E.; González‐García, G.; Hamlin, T. A.; Bickelhaupt, F. M.; Braunschweig, H.; Jiménez‐Halla, J. O. C.; Solà, M. The Search for Enhanced σ‐Donor Ligands to Stabilize Boron‐Boron Multiple Bonds. European Journal of Inorganic Chemistry 2023, 26. doi:10.1002/ejic.202200767
- Koshino, K.; Kinjo, R. Construction of σ-Aromatic AlB2 Ring via Borane Coupling with a Dicoordinate Cyclic (Alkyl)(Amino)Aluminyl Anion. Journal of the American Chemical Society 2020, 142, 9057–9062. doi:10.1021/jacs.0c03179
- Manar, K. K.; Porwal, V. K.; Kamte, R. S.; Adhikari, M.; Thakur, S. K.; Bawari, D.; Choudhury, A. R.; Singh, S. Reactions of a BICAAC with hydroboranes: propensity for Lewis adduct formation and carbene insertion into the B–H bond. Dalton transactions (Cambridge, England : 2003) 2019, 48, 17472–17478. doi:10.1039/c9dt03382c
- Parambil, P. C.; Hoffmann, R. Alkyl Isosteres. Journal of the American Chemical Society 2018, 140, 12844–12852. doi:10.1021/jacs.8b06141
- Cao, L. L.; Stephan, D. W. Reversible 1,1-hydroaluminations and C–H activation in reactions of a cyclic (alkyl)(amino) carbene with alane. Chemical communications (Cambridge, England) 2018, 54, 8407–8410. doi:10.1039/c8cc05013a
- Nesterov, V.; Reiter, D.; Bag, P.; Frisch, P.; Holzner, R.; Porzelt, A.; Inoue, S. NHCs in Main Group Chemistry. Chemical reviews 2018, 118, 9678–9842. doi:10.1021/acs.chemrev.8b00079
- Shao, Y.; Zhang, J.; Li, Y.; Liu, Y.; Ke, Z. Frustrated Lewis Pair Catalyzed C–H Activation of Heteroarenes: A Stepwise Carbene Mechanism Due to Distance Effect. Organic letters 2018, 20, 1102–1105. doi:10.1021/acs.orglett.8b00024
- Auerhammer, D.; Arrowsmith, M.; Braunschweig, H.; Dewhurst, R. D.; Jiménez-Halla, J. O. C.; Kupfer, T. Nucleophilic addition and substitution at coordinatively saturated boron by facile 1,2-hydrogen shuttling onto a carbene donor. Chemical science 2017, 8, 7066–7071. doi:10.1039/c7sc03193a
- Tambutet, G.; Guindon, Y. Diastereoselective Radical Hydrogen Transfer Reactions using N-Heterocyclic Carbene Boranes. The Journal of organic chemistry 2016, 81, 11427–11431. doi:10.1021/acs.joc.6b02066
- Huchenski, B. S. N.; Adams, M. R.; McDonald, R.; Ferguson, M. J.; Speed, A. W. H. Synthesis and Catalytic Reactivity of Bis(amino)cyclopropenylidene Carbene–Borane Adducts. Organometallics 2016, 35, 3104. doi:10.1021/acs.organomet.6b00654
- Böttcher, T.; Röschenthaler, G.-V. Highly reactive carbenes as ligands for main group element fluorides. Syntheses and applications. Journal of Fluorine Chemistry 2015, 171, 4–11. doi:10.1016/j.jfluchem.2014.10.018
- Banert; Hall; Moloney; Reissig; Schaumann. Knowledge Updates 2014/4 - Product Subclass 42: N-Heterocyclic Carbene Borane Complexes. Knowledge Updates 2014/4; Georg Thieme Verlag KG, 2015. doi:10.1055/sos-sd-101-00511
- Murphy, L. J.; Robertson, K. N.; Masuda, J. D.; Clyburne, J. A. C. N‐Heterocyclic Carbenes; Wiley, 2014; pp 427–498. doi:10.1002/9783527671229.ch15
- El-Hellani, A.; Monot, J.; Tang, S.; Guillot, R.; Bour, C.; Gandon, V. Relationship between Gallium Pyramidalization in L·GaCl3 Complexes and the Electronic Ligand Properties. Inorganic chemistry 2013, 52, 11493–11502. doi:10.1021/ic401817g
- Siemeling, U.; Färber, C.; Bruhn, C.; Fürmeier, S.; Schulz, T.; Kurlemann, M.; Tripp, S. Group 10 Metal Complexes of a Ferrocene-Based N-Heterocyclic Carbene: Syntheses, Structures and Catalytic Applications†. European Journal of Inorganic Chemistry 2011, 2012, 1413–1422. doi:10.1002/ejic.201100856
- Curran, D. P.; Solovyev, A.; Brahmi, M. M.; Fensterbank, L.; Malacria, M.; Lacôte, E. Komplexe von N‐heterocyclischen Carbenen mit Boranen: Synthese und Reaktionen. Angewandte Chemie 2011, 123, 10476–10500. doi:10.1002/ange.201102717