Hybrid biofunctional nanostructures as stimuli-responsive catalytic systems

Gernot U. Marten, Thorsten Gelbrich and Annette M. Schmidt
Beilstein J. Org. Chem. 2010, 6, 922–931. https://doi.org/10.3762/bjoc.6.98

Cite the Following Article

Hybrid biofunctional nanostructures as stimuli-responsive catalytic systems
Gernot U. Marten, Thorsten Gelbrich and Annette M. Schmidt
Beilstein J. Org. Chem. 2010, 6, 922–931. https://doi.org/10.3762/bjoc.6.98

How to Cite

Marten, G. U.; Gelbrich, T.; Schmidt, A. M. Beilstein J. Org. Chem. 2010, 6, 922–931. doi:10.3762/bjoc.6.98

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Drozdov, A. S.; Shapovalova, O. E.; Nikitin, M. P. Carbonic anhydrase-magnetite nanocomposites with an RF field controlled enzymatic activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2024, 681, 132539. doi:10.1016/j.colsurfa.2023.132539
  • Yang, D.; Tenhu, H.; Hietala, S. Bicatalytic poly(N-acryloyl glycinamide) microgels. European Polymer Journal 2020, 133, 109760. doi:10.1016/j.eurpolymj.2020.109760
  • Krishnan, B. P.; Prieto-López, L. O.; Hoefgen, S.; Xue, L.; Wang, S.; Valiante, V.; Cui, J. Thermomagneto-Responsive Smart Biocatalysts for Malonyl-Coenzyme A Synthesis. ACS applied materials & interfaces 2020, 12, 20982–20990. doi:10.1021/acsami.0c04344
  • Claaßen, C.; Gerlach, T.; Rother, D. Stimulus-Responsive Regulation of Enzyme Activity for One-Step and Multi-Step Syntheses. Advanced synthesis & catalysis 2019, 361, 2387–2401. doi:10.1002/adsc.201900169
  • Schroffenegger, M.; Reimhult, E. Comprehensive Nanoscience and Nanotechnology - Thermoresponsive Core-Shell Nanoparticles and Their Potential Applications. Comprehensive Nanoscience and Nanotechnology; Elsevier, 2019; pp 145–170. doi:10.1016/b978-0-12-803581-8.10431-x
  • Macchione, M. A.; Biglione, C.; Strumia, M. C. Design, Synthesis and Architectures of Hybrid Nanomaterials for Therapy and Diagnosis Applications. Polymers 2018, 10, 527. doi:10.3390/polym10050527
  • Cao, Y.; Wang, Y. Temperature‐Mediated Regulation of Enzymatic Activity. ChemCatChem 2016, 8, 2740–2747. doi:10.1002/cctc.201600406
  • Slováková, M.; Sedlák, M.; Křížková, B.; Kupcik, R.; Bulánek, R.; Korecká, L.; Drasar, C.; Bílková, Z. Application of trypsin Fe3O4@SiO2 core/shell nanoparticles for protein digestion. Process Biochemistry 2015, 50, 2088–2098. doi:10.1016/j.procbio.2015.09.002
  • Yildiz, I.; Yildiz, B. S. Applications of thermoresponsive magnetic nanoparticles. Journal of Nanomaterials 2015, 16, 357.
  • Yildiz, I.; Sizirici Yildiz, B. Applications of Thermoresponsive Magnetic Nanoparticles. Journal of Nanomaterials 2015, 2015. doi:10.1155/2015/350596
  • Alili, L.; Chapiro, S.; Marten, G. U.; Schmidt, A. M.; Zanger, K.; Brenneisen, P. Effect of Fe3O4 Nanoparticles on Skin Tumor Cells and Dermal Fibroblasts. BioMed research international 2015, 2015, 530957. doi:10.1155/2015/530957
  • Hardiansyah, A.; Huang, L.-Y.; Yang, M.-C.; Liu, T.-Y.; Tsai, S.-C.; Yang, C.-Y.; Kuo, C.-Y.; Chan, T.-Y.; Zou, H.-M.; Lian, W.-N.; Lin, C. H. Magnetic liposomes for colorectal cancer cells therapy by high-frequency magnetic field treatment. Nanoscale research letters 2014, 9, 497. doi:10.1186/1556-276x-9-497
  • Roeben, E.; Roeder, L.; Teusch, S.; Effertz, M.; Deiters, U. K.; Schmidt, A. M. Magnetic particle nanorheology. Colloid and Polymer Science 2014, 292, 2013–2023. doi:10.1007/s00396-014-3289-6
  • Roeben, E.; Roeder, L.; Messing, R.; Frickel, N.; Marten, G. U.; Gelbrich, T.; Schmidt, A. M. Magnetomechanical and Magnetothermal Coupling in Ferrohydrogels. Intelligent Hydrogels; Springer International Publishing, 2013; pp 131–148. doi:10.1007/978-3-319-01683-2_11
  • Zhang, J.; Zhang, M.; Kangjian, T.; Verpoort, F.; Sun, T. Polymer‐Based Stimuli‐Responsive Recyclable Catalytic Systems for Organic Synthesis. Small (Weinheim an der Bergstrasse, Germany) 2013, 10, 32–46. doi:10.1002/smll.201300287
  • Kunz, P. C.; Meyer, H.; Barthel, J.; Sollazzo, S.; Schmidt, A. M.; Janiak, C. Metal carbonyls supported on iron oxide nanoparticles to trigger the CO-gasotransmitter release by magnetic heating. Chemical communications (Cambridge, England) 2013, 49, 4896–4898. doi:10.1039/c3cc41411f
  • Döring, A.; Birnbaum, W.; Kuckling, D. Responsive hydrogels – structurally and dimensionally optimized smart frameworks for applications in catalysis, micro-system technology and material science. Chemical Society reviews 2013, 42, 7391–7420. doi:10.1039/c3cs60031a
  • Netto, C. G. C. M.; Toma, H. E.; Andrade, L. H. Superparamagnetic nanoparticles as versatile carriers and supporting materials for enzymes. Journal of Molecular Catalysis B: Enzymatic 2013, 85, 71–92. doi:10.1016/j.molcatb.2012.08.010
  • Sahiner, N.; Butun; Ilgin, P. Hydrogel particles with core shell morphology for versatile applications: Environmental, biomedical and catalysis. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2011, 386, 16–24. doi:10.1016/j.colsurfa.2011.06.023
  • Harabagiu, V.; Sacarescu, L.; Farcas, A.; Pinteala, M.; Butnaru, M. Surface-initiated polymerisation for nanocoatings. Nanocoatings and Ultra-Thin Films; Elsevier, 2011; pp 78–130. doi:10.1533/9780857094902.1.78
Other Beilstein-Institut Open Science Activities