Supporting Information
A Job plot of sensor 1 with isophthalate, interference studies and the 1H, 13C NMR and HRMS spectra of compound 1, 2 and 4 are available as Supporting Information.
Supporting Information File 1: Spectral data of compounds 1, 2 and 4 and Job plot of sensor 1. | ||
Format: PDF | Size: 985.6 KB | Download |
Cite the Following Article
An easy assembled fluorescent sensor for dicarboxylates and acidic amino acids
Xiao-bo Zhou, Yuk-Wang Yip, Wing-Hong Chan and Albert W. M. Lee
Beilstein J. Org. Chem. 2011, 7, 75–81.
https://doi.org/10.3762/bjoc.7.11
How to Cite
Zhou, X.-b.; Yip, Y.-W.; Chan, W.-H.; Lee, A. W. M. Beilstein J. Org. Chem. 2011, 7, 75–81. doi:10.3762/bjoc.7.11
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Mishra, S. K.; Madduluri, V. K.; Rangan, K.; Sah, A. K. N-Glycoconjugates: Selective colorimetric chemosensors for aspartic acid and cysteine. Journal of Molecular Structure 2021, 1241, 130644. doi:10.1016/j.molstruc.2021.130644
- Tian, J.; Wang, Y.; Chen, Y.; Zhao, F.; Jiang, Y.; Yu, S.; Yu, X.-Q.; Pu, L. Chemoselective and enantioselective fluorescent recognition of glutamic and aspartic acids. Chemical communications (Cambridge, England) 2020, 56, 15012–15015. doi:10.1039/d0cc06736a
- Pu, L. Enantioselective Fluorescent Recognition of Free Amino Acids: Challenges and Opportunities. Angewandte Chemie 2020, 132, 21998–22012. doi:10.1002/ange.202003969
- Pu, L. Enantioselective Fluorescent Recognition of Free Amino Acids: Challenges and Opportunities. Angewandte Chemie (International ed. in English) 2020, 59, 21814–21828. doi:10.1002/anie.202003969
- Guria, S.; Ghosh, A.; Manna, K.; Pal, A.; Adhikary, A.; Adhikari, S. Rapid detection of aspartic acid and glutamic acid in water by BODIPY-Based fluorescent probe: Live-cell imaging and DFT studies. Dyes and Pigments 2019, 168, 111–122. doi:10.1016/j.dyepig.2019.04.052
- Yu, S.; Pu, L. Fluorescent Sensing of Chirality. Comprehensive Supramolecular Chemistry II; Elsevier, 2017; Vol. 8, pp 129–160. doi:10.1016/b978-0-12-409547-2.12623-x
- Pál, D.; Móczár, I.; Kormos, A.; Baranyai, P.; Huszthy, P. Synthesis and enantiomeric recognition studies of optically active 5,5-dioxophenothiazine bis(urea) and bis(thiourea) derivatives. Tetrahedron: Asymmetry 2016, 27, 918–922. doi:10.1016/j.tetasy.2016.08.002
- Xue, Z.; Yin, B.; Wang, H.; Li, M.; Rao, H.; Liu, X.; Zhou, X.; Lu, X. An organic indicator functionalized graphene oxide nanocomposite-based colorimetric assay for the detection of sarcosine. Nanoscale 2016, 8, 5488–5496. doi:10.1039/c6nr00005c
- Yip, Y. W.; Law, G. L.; Wong, T. A highly selective on-off-on responsive lanthanide(iii) based probe for recognition of copper and hydrogen sulfide. Dalton transactions (Cambridge, England : 2003) 2016, 45, 928–935. doi:10.1039/c5dt03627e
- Pál, D.; Móczár, I.; Kormos, A.; Baranyai, P.; Óvári, L.; Huszthy, P. Synthesis and enantiomeric recognition studies of optically active acridone bis(urea) and bis(thiourea) derivatives. Tetrahedron: Asymmetry 2015, 26, 1335–1340. doi:10.1016/j.tetasy.2015.10.004
- Curiel, D.; Más-Montoya, M.; Sánchez, G. Complexation and sensing of dicarboxylate anions and dicarboxylic acids. Coordination Chemistry Reviews 2015, 284, 19–66. doi:10.1016/j.ccr.2014.09.010
- Dai, B.-N.; Cao, Q.-Y.; Wang, L.; Wang, Z.-C.; Yang, Z. A new naphthalene-containing triazolophane for fluorescence sensing of mercury(II) ion. Inorganica Chimica Acta 2014, 423, 163–167. doi:10.1016/j.ica.2014.08.015
- Hosseini, M.; Khabbaz, H.; Dezfoli, A. S.; Ganjali, M. R.; Dadmehr, M. Selective recognition of Glutamate based on fluorescence enhancement of graphene quantum dot. Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy 2014, 136, 1962–1966. doi:10.1016/j.saa.2014.10.117
- Zhang, X.; Yin, J.; Yoon, J. Recent advances in development of chiral fluorescent and colorimetric sensors. Chemical reviews 2014, 114, 4918–4959. doi:10.1021/cr400568b
- Cao, Q.-y.; Han, Y.-M.; Yao, P.-S.; Fu, W.-F.; Xie, Y.; Liu, J.-H. A new ferrocene–anthracene dyad bearing amide and triazolium donors for dual-signaling sensing to anions. Tetrahedron Letters 2014, 55, 248–251. doi:10.1016/j.tetlet.2013.11.007
- Dong, Z.; Zhang, D.; Jiang, X.; Li, H.; Gao, G. A viologen-urea-based anion receptor: Colorimetric sensing of dicarboxylate anions. Chinese Chemical Letters 2013, 24, 688–690. doi:10.1016/j.cclet.2013.04.048
- Cao, Q.-Y.; Wang, Z.-C.; Li, M.; Liu, J.-H. A novel anthracene-appended triazolium for fluorescent sensing to H2PO4-. Tetrahedron Letters 2013, 54, 3933–3936. doi:10.1016/j.tetlet.2013.05.033
- Gong, R.; Mu, H.; Sun, Y.; Fang, X.; Xue, P.; Fu, E. The first fluorescent sensor for medium-chain fatty acids in water: design, synthesis and sensing properties of an organic–inorganic hybrid material. Journal of materials chemistry. B 2013, 1, 2038–2047. doi:10.1039/c3tb00355h
- Jimenez, M. B.; de Arriba, Á. L. F.; Calle, E.; Caballero, M. C. Fluorescent receptor for dicarboxylates based on pyrrolecarboxamides. Supramolecular Chemistry 2012, 24, 361–368. doi:10.1080/10610278.2012.671523
- Jimenez, M. B.; Alcázar, V.; Peláez, R.; Sanz, F.; de Arriba, Á. L. F.; Caballero, M. C. Bis-amidocarbazolyl urea receptor for short-chain dicarboxylate anions. Organic & biomolecular chemistry 2011, 10, 1181–1185. doi:10.1039/c1ob06540h