A practical microreactor for electrochemistry in flow

Kevin Watts, William Gattrell and Thomas Wirth
Beilstein J. Org. Chem. 2011, 7, 1108–1114. https://doi.org/10.3762/bjoc.7.127

Cite the Following Article

A practical microreactor for electrochemistry in flow
Kevin Watts, William Gattrell and Thomas Wirth
Beilstein J. Org. Chem. 2011, 7, 1108–1114. https://doi.org/10.3762/bjoc.7.127

How to Cite

Watts, K.; Gattrell, W.; Wirth, T. Beilstein J. Org. Chem. 2011, 7, 1108–1114. doi:10.3762/bjoc.7.127

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Scherkus, A.; Gudkova, A.; Čada, J.; Müller, B. H.; Bystron, T.; Francke, R. Low-Cost, Safe, and Anion-Flexible Method for the Electrosynthesis of Diaryliodonium Salts. The Journal of organic chemistry 2024, 89, 14129–14134. doi:10.1021/acs.joc.4c01521
  • Zuo, Y.-W.; Zhao, Y.; Zhang, Y.-F.; Guo, X.-Y.; Wu, T.-R.; Jin, R.-X.; Wang, X.-S. Visible-Light-Induced Oxidative Decarboxylative Coupling of Phenylacetic Acid Derivatives Using SF6 as an Oxidant. Organic letters 2024, 26, 5652–5656. doi:10.1021/acs.orglett.4c01609
  • Mizar, P.; Arepally, S.; Wirth, T. Biphasic organic synthesis with continuous electro-flow. Current Opinion in Green and Sustainable Chemistry 2024, 46, 100896. doi:10.1016/j.cogsc.2024.100896
  • Winterson, B.; Bhattacherjee, D.; Wirth, T. Hypervalent Halogen Compounds in Electrochemical Reactions: Advantages and Prospects. Advanced Synthesis & Catalysis 2023, 365, 2676–2689. doi:10.1002/adsc.202300412
  • Linde, E.; Mondal, S.; Olofsson, B. Advancements in the Synthesis of Diaryliodonium Salts: Updated Protocols. Advanced Synthesis & Catalysis 2023, 365, 2751–2756. doi:10.1002/adsc.202300354
  • Spils, J.; Wirth, T.; Nachtsheim, B. J. Two-step continuous-flow synthesis of 6-membered cyclic iodonium salts via anodic oxidation. Beilstein journal of organic chemistry 2023, 19, 27–32. doi:10.3762/bjoc.19.2
  • Buriánek, J. D.; Kvicala, J.; Sekerova, L.; Müller, B. H.; Francke, R.; Bystron, T. Determination of Diaryliodonium Species by Reverse Iodometric Titration with Ascorbic Acid. Electroanalysis 2022, 35. doi:10.1002/elan.202200376
  • Liu, D.; Xu, H. Electrochemical Rearrangement of Indoles to Spirooxindoles in Continuous Flow. European Journal of Organic Chemistry 2022, 26. doi:10.1002/ejoc.202200987
  • Klein, M.; Waldvogel, S. R. Reaktionen an der Gegenelektrode – wichtige Stolpersteine auf dem Weg einer funktionierenden elektro‐organischen Synthese. Angewandte Chemie 2022, 134. doi:10.1002/ange.202204140
  • Klein, M.; Waldvogel, S. R. Counter Electrode Reactions-Important Stumbling Blocks on the Way to a Working Electro-organic Synthesis. Angewandte Chemie (International ed. in English) 2022, 61, e202204140. doi:10.1002/anie.202204140
  • Baumgarten, N.; Etzold, B. J. M.; Magomajew, J.; Ziogas, A. Scalable Microreactor Concept for the Continuous Kolbe Electrolysis of Carboxylic Acids Using Aqueous Electrolyte. ChemistryOpen 2022, 11, e202200171. doi:10.1002/open.202200171
  • Long, H.; Chen, T.-S.; Song, J.; Zhu, S.; Xu, H.-C. Electrochemical aromatic C-H hydroxylation in continuous flow. Nature communications 2022, 13, 3945. doi:10.1038/s41467-022-31634-4
  • Pokhrel, T.; B K, B.; Giri, R.; Adhikari, A.; Ahmed, N. C-H Bond Functionalization under Electrochemical Flow Conditions. Chemical record (New York, N.Y.) 2022, 22, e202100338. doi:10.1002/tcr.202100338
  • Kurig, N.; Meyers, J.; Richter, E.; Palkovits, S.; Palkovits, R. 3D Printed Microreactors for the Continuous Non‐Kolbe Electrolysis. Chemie Ingenieur Technik 2022, 94, 786–790. doi:10.1002/cite.202100178
  • Forni, J. A.; Czyz, M. L.; Lupton, D. W.; Polyzos, A. An electrochemical γ-C–H arylation of amines in continuous flow. Tetrahedron Letters 2022, 91, 153647. doi:10.1016/j.tetlet.2022.153647
  • Frey †, B.; Maity †, A.; Tan, H.; Roychowdhury, P.; Powers, D. C. doi:10.1002/9783527829569.ch12
  • Leadbeater, N. E. Flow Chemistry as an Enabling Technology for Synthetic Organic Chemistry. Methods in Pharmacology and Toxicology; Springer New York, 2021; pp 489–526. doi:10.1007/978-1-0716-1579-9_14
  • Quertenmont, M.; Toussaint, F. C.; Defrance, T.; Lam, K.; Markó, I. E.; Riant, O. Continuous flow electrochemical oxidative cyclization and successive functionalization of 2-Pyrrolidinones. Organic Process Research & Development 2021, 25, 2631–2638. doi:10.1021/acs.oprd.1c00188
  • Guo, B.; Xu, H.-C. Electrocatalytic C(sp3)-H/C(sp)-H cross-coupling in continuous flow through TEMPO/copper relay catalysis. Beilstein journal of organic chemistry 2021, 17, 2650–2656. doi:10.3762/bjoc.17.178
  • Yang, J.; Kang, D. S.; Yeon, S.; Han, J.; Son, Y.; Yongshig, S. P.; Kang, D.; Choi, P.; Park, S.-H.; Ha, C.-W. Additive Manufacturing Based Design of Metal Continuous Flow Reactor of Inner Micro Structure for Continuous Mixing and Reaction of Chemical Solvents. Journal of the Korean Society for Precision Engineering 2021, 38, 659–666. doi:10.7736/jkspe.021.060
Other Beilstein-Institut Open Science Activities