Supporting Information
Supporting Information File 1: Description of the flow reactor setup, experimental procedures and spectroscopic data of all compounds. | ||
Format: PDF | Size: 4.2 MB | Download |
Cite the Following Article
Continuous flow photolysis of aryl azides: Preparation of 3H-azepinones
Farhan R. Bou-Hamdan, François Lévesque, Alexander G. O'Brien and Peter H. Seeberger
Beilstein J. Org. Chem. 2011, 7, 1124–1129.
https://doi.org/10.3762/bjoc.7.129
How to Cite
Bou-Hamdan, F. R.; Lévesque, F.; O'Brien, A. G.; Seeberger, P. H. Beilstein J. Org. Chem. 2011, 7, 1124–1129. doi:10.3762/bjoc.7.129
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Suwasia, S.; Arulananda Babu, S. Construction of Aryl Azide‐ and Triazole‐Based Unnatural Amino Acid Motifs via the Pd(II)‐Catalyzed C(sp3)−H Arylation. European Journal of Organic Chemistry 2024. doi:10.1002/ejoc.202400607
- Tonon, G.; Rizzolio, F.; Visentin, F.; Scattolin, T. Antibody Drug Conjugates for Cancer Therapy: From Metallodrugs to Nature-Inspired Payloads. International journal of molecular sciences 2024, 25, 8651. doi:10.3390/ijms25168651
- Li, X.; Xu, J.; Xu, Z.-G. Precision single-atom editing: new frontiers in nitrogen insertion and substitution for the generation of N-heterocycles. Organic Chemistry Frontiers 2024, 11, 4041–4053. doi:10.1039/d4qo00812j
- Baumann, M.; Baxendale, I. R. Durchflusschemieansätze angewendet auf die Synthese von gesättigten Heterocyclen. Flow-Chemie für die Synthese von Heterocyclen; Springer International Publishing, 2024; pp 205–259. doi:10.1007/978-3-031-51912-3_5
- Giricheva, M. A.; Budruev, A. V. Effects of the Solvent and the Nucleophile on the Photochemical Synthesis of Azepines. ChemistrySelect 2024, 9. doi:10.1002/slct.202400057
- Vaccaro, L.; Ferlin, F. Flow Photochemistry. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier, 2024. doi:10.1016/b978-0-443-15742-4.00074-0
- Davydov, D. A.; Giricheva, M. A.; Malysheva, Y. B.; Fukin, G. K.; Budruev, A. V. Photoinitiated Rearrangement of Aromatic Azides to 2-Aminonicotinates. The Journal of organic chemistry 2023, 88, 14998–15006. doi:10.1021/acs.joc.3c01453
- Pearson, T. J.; Shimazumi, R.; Driscoll, J. L.; Dherange, B. D.; Park, D.-I.; Levin, M. D. Aromatic nitrogen scanning by ipso-selective nitrene internalization. Science (New York, N.Y.) 2023, 381, 1474–1479. doi:10.1126/science.adj5331
- Balan-Porcăraşu, M.; Roman, G. Novel chalcone analogs derived from 4-(benzyloxy)benzaldehyde. Ovidius University Annals of Chemistry 2023, 34, 112–120. doi:10.2478/auoc-2023-0015
- Pustahija, L.; Kern, W. Surface Functionalization of (Pyrolytic) Carbon—An Overview. 2023, 9, 38. doi:10.3390/c9020038
- Zhang, Y.; Tan, J.; Chen, Y. Visible-light-induced protein labeling in live cells with aryl azides. Chemical communications (Cambridge, England) 2023, 59, 2413–2420. doi:10.1039/d2cc06987c
- Săcărescu, L.; Dascălu, M.; Chibac-Scutaru, A.-L.; Roman, G. Synthesis, structural characterization, photophysical study and investigation as fluorescent sensor towards metal ions of 1,2,3-triazole–azaindene hybrids. Journal of Photochemistry and Photobiology A: Chemistry 2022, 433, 114160. doi:10.1016/j.jphotochem.2022.114160
- Wei, K.; Jiang, M.; Yu, W.; Liang, S. Iron-Catalyzed Benzene Ring Expansion of α-Azido-N-phenylamides. Synthesis 2022, 54, 5203–5214. doi:10.1055/a-1915-7916
- Donnelly, K.; Baumann, M. Continuous Flow Technology as an Enabler for Innovative Transformations Exploiting Carbenes, Nitrenes, and Benzynes. The Journal of organic chemistry 2022, 87, 8279–8288. doi:10.1021/acs.joc.2c00963
- Baumann, M. doi:10.1002/9781119757153.ch12
- Mueller, M.; Bandl, C.; Kern, W. Surface-Immobilized Photoinitiators for Light Induced Polymerization and Coupling Reactions. Polymers 2022, 14, 608. doi:10.3390/polym14030608
- Wei, K.; Liang, S.; Yang, T.; Yu, W. Iron-Catalyzed 1,4-Phenyl Migration/Ring Expansion of α-Azido N-Phenyl Amides. Organic letters 2021, 23, 8650–8654. doi:10.1021/acs.orglett.1c03509
- Budruev, A. V.; Davydov, D. A.; Giricheva, M. A.; Pokrovskaya, A. V.; Fukin, G. K.; Pronina, A. L. Water-Promoted Photochemical Synthesis of 12-Oxo-6,12-Dihydroazepino[2,1-b]quinazolines with Competitive Formation of 3H-Azepine-2(1H)-Ones. High Energy Chemistry 2021, 55, 273–279. doi:10.1134/s0018143921040032
- Bratanovici, B.-I.; Shova, S.; Lozan, V.; Dascălu, I.-A.; Ardeleanu, R.; Roman, G. 1-(4-Carboxyphenyl)-5-methyl-1H-1,2,3-triazole-4-carboxylic acid – A versatile ligand for the preparation of coordination polymers and mononuclear complexes. Polyhedron 2021, 200, 115115. doi:10.1016/j.poly.2021.115115
- Manvinder, K.; Sonali, G.; Dharambeer, S. M.; Harvinder, S. S. A Review on Synthesis, Reactions and Biological Properties of Seven Membered Heterocyclic Compounds: Azepine, Azepane, Azepinone. Current Organic Chemistry 2021, 25, 449–506. doi:10.2174/1385272825999210104222338
Patents
- SEEBERGER PETER H; KOPETZKI DANIEL; LÉVESQUE FRANCOIS. Method and device for the synthesis of artemisinin. US 9409142 B2, Aug 9, 2016.
- SEEBERGER PETER H; KOPETZKI DANIEL; LÉVESQUE FRANCOIS. METHOD AND DEVICE FOR THE SYNTHESIS OF ARTEMISININ. US 20150328617 A1, Nov 19, 2015.