Cite the Following Article
Translation of microwave methodology to continuous flow for the efficient synthesis of diaryl ethers via a base-mediated SNAr reaction
Charlotte Wiles and Paul Watts
Beilstein J. Org. Chem. 2011, 7, 1360–1371.
https://doi.org/10.3762/bjoc.7.160
How to Cite
Wiles, C.; Watts, P. Beilstein J. Org. Chem. 2011, 7, 1360–1371. doi:10.3762/bjoc.7.160
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Wei, M.; Chen, J.; Liu, C.; Yang, Z.; Qin, H.; Hu, Y.; Duan, J.; Li, Y.; Fang, Z.; Guo, K. Synthesis of imidazo[1,2-a]pyridinones via a visible light-photocatalyzed functionalization of alkynes/nitrile insertion/cyclization tandem sequence using micro-flow technology. Organic Chemistry Frontiers 2023, 11, 83–88. doi:10.1039/d3qo01508d
- Bogaerts, A.; Centi, G.; Hessel, V.; Rebrov, E. Challenges in unconventional catalysis. Catalysis Today 2023, 420, 114180. doi:10.1016/j.cattod.2023.114180
- Wei, M.; Liu, C.; Wang, C.-S.; Li, Y.; Qiu, P.; Dong, Q.; Yang, Z.; Fang, Z.; Guo, K. Synthesis of pyrido[1,2-a]indol-6(7H)-ones via a visible light-photocatalyzed formal (4 + 2) cycloaddition of indole-derived bromides and alkenes or alkynes. Green Chemistry 2023, 25, 2453–2457. doi:10.1039/d2gc04491a
- Cheng, H.; Zhu, Y.-Q.; Liu, P.-F.; Yang, K.-Q.; Yan, J.; Sang, W.; Tang, X.-S.; Zhang, R.; Chen, C. Switchable and Scalable Heteroarylation of Primary Amines with 2-Chlorobenzothiazoles under Transition-Metal-Free and Solvent-Free Conditions. The Journal of organic chemistry 2021, 86, 10288–10302. doi:10.1021/acs.joc.1c01019
- Martina, K.; Cravotto, G.; Varma, R. S. Impact of Microwaves on Organic Synthesis and Strategies toward Flow Processes and Scaling Up. The Journal of organic chemistry 2021, 86, 13857–13872. doi:10.1021/acs.joc.1c00865
- Jin, Y.; Yang, J.; Feng, X.; Li, J.; Jianguo, X.; Chen, X.; Wang, S.; Lv, Y.; Jiangang, Y. Development of large-scale oxidative Bromination with HBr-DMSO by using a continuous-flow microwave system for the subsequent synthesis of 4-Methoxy-2-methyldiphenylamine. Journal of Flow Chemistry 2020, 10, 369–376. doi:10.1007/s41981-020-00094-6
- Li, P.; Yang, S.; Zhu, R.; Sun, B.; Li, Z.; Huang, P.; Buser, J. Y.; Minguez, J. M.; Ryan, S. J. Continuous Flow Conditions for High Temperature Formation of a Benzodioxan Pharmaceutical Intermediate: Rapid Scaleup for Early Phase Material Delivery. Organic Process Research & Development 2020, 24, 1938–1947. doi:10.1021/acs.oprd.9b00499
- Egami, H.; Hamashima, Y. Practical and Scalable Organic Reactions with Flow Microwave Apparatus. Chemical record (New York, N.Y.) 2018, 19, 157–171. doi:10.1002/tcr.201800132
- Aronow, J.; Stanetty, C.; Baxendale, I. R.; Mihovilovic, M. D. Methyl glycosides via Fischer glycosylation: translation from batch microwave to continuous flow processing. Monatshefte fur chemie 2018, 150, 11–19. doi:10.1007/s00706-018-2306-8
- Egami, H.; Tamaoki, S.; Abe, M.; Ohneda, N.; Yoshimura, T.; Okamoto, T.; Odajima, H.; Mase, N.; Takeda, K.; Hamashima, Y. Scalable Microwave-Assisted Johnson–Claisen Rearrangement with a Continuous Flow Microwave System. Organic Process Research & Development 2018, 22, 1029–1033. doi:10.1021/acs.oprd.8b00185
- Weiberth, F. J.; Powers, M. R.; Gallin, C.; McDonald, D. Segmented Tube Reactors (STR): A Simple Tool To Screen Multiple Reactions in Parallel in Batch Mode within a Single Tube. Organic Process Research & Development 2018, 22, 512–519. doi:10.1021/acs.oprd.8b00009
- Plutschack, M. B.; Pieber, B.; Gilmore, K.; Seeberger, P. H. The Hitchhiker's Guide to Flow Chemistry. Chemical reviews 2017, 117, 11796–11893. doi:10.1021/acs.chemrev.7b00183
- Elazab, H. A.; Moussa, S.; Brinkley, K. W.; Gupton, B. F.; El-Shall, M. S. The continuous synthesis of Pd supported on Fe3O4 nanoparticles: a highly effective and magnetic catalyst for CO oxidation. Green Processing and Synthesis 2017, 6, 413–424. doi:10.1515/gps-2016-0168
- Cortés-Borda, D.; Kutonova, K.; Jamet, C.; Trusova, M. E.; Zammattio, F.; Truchet, C.; Rodriguez-Zubiri, M.; Felpin, F.-X. Optimizing the Heck–Matsuda Reaction in Flow with a Constraint-Adapted Direct Search Algorithm. Organic Process Research & Development 2016, 20, 1979–1987. doi:10.1021/acs.oprd.6b00310
- ŽivkoviĿ, L. A.; NikaĿeviĿ, N. M. A method for reactor synthesis based on process intensification principles and optimization of superstructure consisting of phenomenological modules. Chemical Engineering Research and Design 2016, 113, 189–205. doi:10.1016/j.cherd.2016.07.008
- Tandon, R.; Zipse, H. Lewis Base Catalysis in Organic Synthesis; Wiley, 2016; pp 119–144. doi:10.1002/9783527675142.ch5
- Glasnov, T. N. Continuous-Flow Chemistry in the Research Laboratory - Organic Synthesis in Dedicated Continuous Flow Systems: Further Chemistry Examples. Continuous-Flow Chemistry in the Research Laboratory; Springer International Publishing, 2016; pp 93–112. doi:10.1007/978-3-319-32196-7_10
- Alam, M. P.; Barbara, J.; Campagna, J.; Spilman, P.; John, V. C-O bond Formation in a Microfluidic Reactor: High Yield S N Ar Substitution of Heteroaryl Chlorides. Tetrahedron letters 2016, 57, 2059–2062. doi:10.1016/j.tetlet.2016.03.095
- Charaschanya, M.; Bogdan, A.; Wang, Y.; Djuric, S. W. Nucleophilic aromatic substitution of heterocycles using a high-temperature and high-pressure flow reactor. Tetrahedron Letters 2016, 57, 1035–1039. doi:10.1016/j.tetlet.2016.01.080
- Sythana, S. K.; Naramreddy, S. R.; Kavitake, S.; Kumar, C. H. V.; Bhagat, P. R. Nonpolar Solvent a Key for Highly Regioselective SNAr Reaction in the Case of 2,4-Difluoronitrobenzene. Organic Process Research & Development 2014, 18, 912–918. doi:10.1021/op500120z