Hypervalent iodine(III)-induced methylene acetoxylation of 3-oxo-N-substituted butanamides

  1. 1 ,
  2. 1 ,
  3. 1 and
  4. 2
1School of Chemistry and Life Science, Guangdong University of Petrochemical Technology, Maoming 525000, China
2College of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
  1. Corresponding author email
Associate Editor: B. Stoltz
Beilstein J. Org. Chem. 2011, 7, 1436–1440. https://doi.org/10.3762/bjoc.7.167
Received 02 Sep 2011, Accepted 23 Sep 2011, Published 19 Oct 2011

Abstract

1-Carbamoyl-2-oxopropyl acetate derivatives were synthesized through an acetoxylation process to methylene with the aid of (diacetoxyiodo)benzene (DIB) as the oxidant. Not only mild reaction conditions, but also excellent yields and good substrate scope make the present protocol potentially useful in organic synthesis.

Introduction

Carbon–carbon, carbon–heteroatom bond formation leading to useful molecular structures is one of the most interesting and challenging research topics in organic chemistry [1-14]. Indeed, direct oxidative C–H bond functionalization provides an atom-economical and efficient pathway to achieve these goals. Representative examples have been elegantly utilized not only in academic research, but also in the production of a variety of fine chemicals, such as pharmaceuticals, agrochemicals, and intermediates [15-18]. The field of chemistry concerning organic polyvalent iodine compounds has witnessed a great expansion during the last few decades, an expansion which continues at an increasing pace [19-30]. The availability of iodine(III) and iodine(V) compounds and the development of new reagents, along with their low toxicity, ready availability, easy handling, clean transformation and reactivity, their selectivity under a variety of conditions, and their tolerance to different functional groups make these compounds valuable tools in organic synthesis [31-36]. Our interest in the chemistry of polyvalent iodine(III) reagents [37-39] prompted us to exploit the reactivity of (diacetoxyiodo)benzene (DIB). We report herein the use of DIB, as a nucleophile and oxidant, to perform an acetoxylation reaction with 3-oxo-N-substituted butanamides (Scheme 1).

[1860-5397-7-167-i1]

Scheme 1: Synthesis of 1-carbamoyl-2-oxopropyl acetates.

Results and Discussion

Initially, we employed 3-oxo-N-phenylbutanamide (1a) as the model substrate and tried to establish an effective reaction system for the synthesis. The results are shown in Table 1. It was found that the reaction afforded the desired product 1-(phenylcarbamoyl)-2-oxopropyl acetate (2a) by using DIB as the additive, and the optimum reaction time was 2 hours (Table 1, entries 1–3), whereas almost no desired product was obtained when Lewis acids were added (Table 1, entries 4–6). Among the various solvents examined, dioxane, DCE and DMF were practical solvents (Table 1, entries 2, 7–9). It is noteworthy that the reaction led to an obvious decrease of the yield of 2a when either 0.5 or 2 equiv of DIB were used (Table 1, entries 11 and 13) compared to 1.3 equiv (Table 1, entry 12), which was found to be the optimum amount of DIB (Table 1, entries 11–13).

Table 1: Optimization of reaction conditions.a

[Graphic 1]
entry solvent additive (1.0 equiv) time (h) yield (%)b
1 dioxane 1 66
2 dioxane 2 80
3 dioxane 3 81
4 dioxane FeCl3 2 trace
5 dioxane ZnCl2 2 trace
6 dioxane CuCl2 2 trace
7 cyclohexane 2 36
8 DCE 2 82
9 DMF 2 71
10 DMSO 2 47
11c DCE 2 35
12d DCE 2 89
13e DCE 2 75

a1a (0.25 mmol), solvent (2 mL), DIB (1.0 equiv); bGC yield; cDIB (0.5 equiv); dDIB (1.3 equiv); eDIB (2.0 equiv).

To explore the substrate scope and limitations of this reaction, a range of 3-oxo-N-phenylbutanamides were then examined under the optimized reaction conditions. The results are shown in Scheme 2.

[1860-5397-7-167-i2]

Scheme 2: The synthesis of 1-carbamoyl-2-oxopropyl acetates. Conditions: 1 (1.0 mmol), DCE (2 mL), DIB (1.3 equiv); %: Isolated yield.

We found that the reaction led to the corresponding products 2a–2l in excellent isolated yields with all substrates. The reaction appears to be quite tolerant to differences in the position, number and electronic contribution of the substituent on the benzene ring. For example, the reactions of 3-oxo-N-phenylbutanamide, N-(4-methoxyphenyl)-3-oxobutanamide, N-(2-methoxyphenyl)-3-oxobutanamide, N-(2,5-dichlorophenyl)-3-oxobutanamide, N-(2,4-dimethoxyphenyl)-3-oxobutanamide as well as N-(4-chloro-2,5-dimethoxyphenyl)-3-oxobutanamide all lead to the corresponding products (2a, 2e, 2f, 2g, 2j, and 2k, respectively) in excellent isolated yield. Similarly, the reactions of other N-(alkylsubstituted)-3-oxobutanamides were investigated, such as that of N-methyl-3-oxobutanamide (1l), which led to 1-(methylcarbamoyl)-2-oxopropyl acetate in 89% yield. Furthermore, we applied this method to non-carbamoyl 1,3-dicarbonyl compounds. These substrates, namely 1-phenylbutane-1,3-dione, 1,3-diphenylpropane-1,3-dione and ethyl 3-oxo-3-phenylpropanoate, all produced products in moderate isolated yields (2m, 2n, 2o).

A plausible mechanism for the described transformation can be rationalized as shown in Scheme 3. The reaction initiates with the attack of the lone-pair electrons of the carbamoyl nitrogen [39-41] or carbonyl oxygen [42-45] on the iodine(III) of DIB, forming intermediates 3 and 5, respectively. Alternatively, DIB attacks the C–C double bond of the enol derived from 1a and forms intermediate 6 [46,47]. The subsequent N–I, O–I and C–I bond cleavage along with the nucleophilic attack of the acetate ion on the C–N or C–C double bond of the intermediate 4, 5 or 6 affords the final product 2a.

[1860-5397-7-167-i3]

Scheme 3: Possible reaction mechanism.

Conclusion

In conclusion, we have shown an efficient and operationally simple method to synthesize 1-carbamoyl-2-oxopropyl acetate derivatives. The readily accessible starting materials, cheap oxidant DIB, as well as the mild reaction conditions and excellent yields make the present protocol potentially useful in organic synthesis. Further studies on the application to more valuable compounds and detailed investigations of the reaction mechanism are in progress.

Supporting Information

Supporting Information File 1: Experimental details and copies of NMR spectra.
Format: PDF Size: 3.8 MB Download

Acknowledgements

The authors thank the College of Pharmaceutical Sciences of the Southern Medical University of China for financial support of this work.

References

  1. Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem. Rev. 2002, 102, 1731–1770. doi:10.1021/cr0104330
    Return to citation in text: [1]
  2. Kakiuchi, F.; Chatani, N. Adv. Synth. Catal. 2003, 345, 1077–1101. doi:10.1002/adsc.200303094
    Return to citation in text: [1]
  3. Dilman, A. D.; Ioffe, S. L. Chem. Rev. 2003, 103, 733–772. doi:10.1021/cr020003p
    Return to citation in text: [1]
  4. Fagnou, K.; Lautens, M. Chem. Rev. 2003, 103, 169–196. doi:10.1021/cr020007u
    Return to citation in text: [1]
  5. Li, C.-J. Chem. Rev. 2005, 105, 3095–3166. doi:10.1021/cr030009u
    Return to citation in text: [1]
  6. Fagnoni, M.; Dondi, D.; Ravelli, D.; Albini, A. Chem. Rev. 2007, 107, 2725–2756. doi:10.1021/cr068352x
    Return to citation in text: [1]
  7. Beccalli, E. M.; Broggini, G.; Martinelli, M.; Sottocornola, S. Chem. Rev. 2007, 107, 5318–5365. doi:10.1021/cr068006f
    Return to citation in text: [1]
  8. Tong, X.; Beller, M.; Tse, M. K. J. Am. Chem. Soc. 2007, 129, 4906–4907. doi:10.1021/ja070919j
    Return to citation in text: [1]
  9. Niu, J.; Zhou, H.; Li, Z.; Xu, J.; Hu, S. J. Org. Chem. 2008, 73, 7814–7817. doi:10.1021/jo801002c
    Return to citation in text: [1]
  10. Lee, J. M.; Park, E. J.; Cho, S. H.; Chang, S. J. Am. Chem. Soc. 2008, 130, 7824–7825. doi:10.1021/ja8031218
    Return to citation in text: [1]
  11. Ueda, S.; Nagasawa, H. J. Org. Chem. 2009, 74, 4272–4277. doi:10.1021/jo900513z
    Return to citation in text: [1]
  12. Liang, Z.; Hou, W.; Du, Y.; Zhang, Y.; Pan, Y.; Mao, D.; Zhao, K. Org. Lett. 2009, 11, 4978–4981. doi:10.1021/ol902157c
    Return to citation in text: [1]
  13. Peng, Y.; Cui, L.; Zhang, G.; Zhang, L. J. Am. Chem. Soc. 2009, 131, 5062–5063. doi:10.1021/ja901048w
    Return to citation in text: [1]
  14. Mizuhara, T.; Oishi, S.; Fujii, N.; Ohno, H. J. Org. Chem. 2010, 75, 265–268. doi:10.1021/jo902327n
    Return to citation in text: [1]
  15. Markó, I. E.; Giles, P. R.; Tsukazaki, M.; Brown, S. M.; Urch, C. J. Science 1996, 274, 2044–2046. doi:10.1126/science.274.5295.2044
    Return to citation in text: [1]
  16. ten Brink, G.-J.; Arends, I. W. C. E.; Sheldon, R. A. Science 2000, 287, 1636–1639. doi:10.1126/science.287.5458.1636
    Return to citation in text: [1]
  17. Enache, D. I.; Edwards, J. K.; Landon, P.; Solsona-Espriu, B.; Carley, A. F.; Herzing, A. A.; Watanabe, M.; Kiely, C. J.; Knight, D. W.; Hutchings, G. J. Science 2006, 311, 362–365. doi:10.1126/science.1120560
    Return to citation in text: [1]
  18. Piera, J.; Bäckvall, J.-E. Angew. Chem., Int. Ed. 2008, 47, 3506–3523. doi:10.1002/anie.200700604
    Return to citation in text: [1]
  19. Varvoglis, A. The Organic Chemistry of Polycoordinated Iodine; VCH: New York, 1992.
    Return to citation in text: [1]
  20. Varvoglis, A. Hypervalent Iodine in Organic Synthesis; Academic Press: London, 1997.
    Return to citation in text: [1]
  21. Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2002, 102, 2523–2584. doi:10.1021/cr010003+
    Return to citation in text: [1]
  22. Wirth, T., Ed. Hypervalent Iodine Chemistry; Springer-Verlag: Berlin, 2003.
    Return to citation in text: [1]
  23. Richardson, R. D.; Wirth, T. Angew. Chem., Int. Ed. 2006, 45, 4402–4404. doi:10.1002/anie.200601817
    Return to citation in text: [1]
  24. Ciufolini, M. A.; Braun, N. A.; Canesi, S.; Ousmer, M.; Chang, J.; Chai, D. Synthesis 2007, 3759–3772. doi:10.1055/s-2007-990906
    Return to citation in text: [1]
  25. Quideau, S.; Pouységu, L.; Deffieux, D. Synlett 2008, 467–495. doi:10.1055/s-2008-1032094
    Return to citation in text: [1]
  26. Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2008, 108, 5299–5358. doi:10.1021/cr800332c
    Return to citation in text: [1]
  27. Koller, R.; Stanek, K.; Stolz, D.; Aardoom, R.; Niedermann, K.; Togni, A. Angew. Chem., Int. Ed. 2009, 48, 4332–4336. doi:10.1002/anie.200900974
    Return to citation in text: [1]
  28. Uyanik, M.; Yasui, T.; Ishihara, K. Angew. Chem., Int. Ed. 2010, 49, 2175–2177. doi:10.1002/anie.200907352
    Return to citation in text: [1]
  29. Niedermann, K.; Früh, N.; Vinogradova, E.; Wiehn, M. S.; Moreno, A.; Togni, A. Angew. Chem., Int. Ed. 2011, 50, 1059–1063. doi:10.1002/anie.201006021
    Return to citation in text: [1]
  30. Brand, J. P.; González, D. F.; Nicolai, S.; Waser, J. Chem. Commun. 2011, 47, 102–115. doi:10.1039/c0cc02265a
    Return to citation in text: [1]
  31. Ochiai, M.; Miyamoto, K. Eur. J. Org. Chem. 2008, 4229–4239. doi:10.1002/ejoc.200800416
    Return to citation in text: [1]
  32. Dohi, T.; Kita, Y. Chem. Commun. 2009, 2073–2085. doi:10.1039/b821747e
    Return to citation in text: [1]
  33. Jen, T.; Mendelsohn, B. A.; Ciufolini, M. A. J. Org. Chem. 2011, 76, 728–731. doi:10.1021/jo102241s
    Return to citation in text: [1]
  34. Sun, Y.; Fan, R. H. Chem. Commun. 2010, 46, 6834–6836. doi:10.1039/c0cc01911a
    Return to citation in text: [1]
  35. Chen, L.; Shi, E.; Liu, Z.; Chen, S.; Wei, W.; Li, H.; Xu, K.; Wan, X. Chem.–Eur. J. 2011, 17, 4085–4089. doi:10.1002/chem.201100192
    Return to citation in text: [1]
  36. Uyanik, M.; Yasui, T.; Ishihara, K. Angew. Chem., Int. Ed. 2010, 49, 2175–2177. doi:10.1002/anie.200907352
    Return to citation in text: [1]
  37. Liu, W.; Jiang, H.; Huang, L. Org. Lett. 2010, 12, 312–315. doi:10.1021/ol9026478
    Return to citation in text: [1]
  38. Liu, W.; Chen, C.; Zhang, Q. Org. Biomol. Chem. 2011, 9, 6484–6486. doi:10.1039/c1ob05958k
    Return to citation in text: [1]
  39. Li, X.; Du, Y.; Liang, Z.; Li, X.; Pan, Y.; Zhao, K. Org. Lett. 2009, 11, 2643–2646. doi:10.1021/ol9006663
    Return to citation in text: [1] [2]
  40. Malamidou-Xenikaki, E.; Spyroudis, S.; Tsanakopoulou, M.; Hadjipavlou-Litina, D. J. Org. Chem. 2009, 74, 7315–7321. doi:10.1021/jo9013063
    Return to citation in text: [1]
  41. Serna, S.; Tellitu, I.; Domínguez, E.; Moreno, I.; SanMartín, R. Org. Lett. 2005, 7, 3073–3076. doi:10.1021/ol0510623
    Return to citation in text: [1]
  42. Harayama, Y.; Yoshida, M.; Kamimura, D.; Kita, Y. Chem. Commun. 2005, 1764–1766. doi:10.1039/b418212j
    Return to citation in text: [1]
  43. Singh, C. B.; Ghosh, H.; Murru, S.; Patel, B. K. J. Org. Chem. 2008, 73, 2924–2927. doi:10.1021/jo702628g
    Return to citation in text: [1]
  44. Mizukami, F.; Ando, M.; Tanaka, T.; Imamura, J. Bull. Chem. Soc. Jpn. 1978, 51, 335–336. doi:10.1246/bcsj.51.335
    Return to citation in text: [1]
  45. Kawano, Y.; Togo, H. Synlett 2008, 217–220. doi:10.1055/s-2007-1000871
    Return to citation in text: [1]
  46. Yu, J.; Tian, J.; Zhang, C. Adv. Synth. Catal. 2010, 352, 531–546. doi:10.1002/adsc.200900737
    Return to citation in text: [1]
  47. Ochiai, M.; Takeuchi, Y.; Katayama, T.; Sueda, T.; Miyamoto, K. J. Am. Chem. Soc. 2005, 127, 12244–12245. doi:10.1021/ja0542800
    Return to citation in text: [1]
Other Beilstein-Institut Open Science Activities