Supporting Information
The Supporting Information provides details on individual reactions and analytical data.
Supporting Information File 1: Details on individual reactions and analytical data. | ||
Format: PDF | Size: 103.7 KB | Download |
Cite the Following Article
Multistep flow synthesis of vinyl azides and their use in the copper-catalyzed Huisgen-type cycloaddition under inductive-heating conditions
Lukas Kupracz, Jan Hartwig, Jens Wegner, Sascha Ceylan and Andreas Kirschning
Beilstein J. Org. Chem. 2011, 7, 1441–1448.
https://doi.org/10.3762/bjoc.7.168
How to Cite
Kupracz, L.; Hartwig, J.; Wegner, J.; Ceylan, S.; Kirschning, A. Beilstein J. Org. Chem. 2011, 7, 1441–1448. doi:10.3762/bjoc.7.168
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Crawford, R.; Baumann, M. Telescoped Flow Synthesis of Azacyclic Scaffolds Exploiting the Chromoselective Photolysis of Vinyl Azides and Azirines. Chemistry (Weinheim an der Bergstrasse, Germany) 2024, 30, e202401491. doi:10.1002/chem.202401491
- Xia, C.; Sun, X.; Zhang, J.; Ren, Y.; Yu, Y.; Wang, K.; Meng, L. Controlling the Reactivity of IBA‐N3 by Switching Halogen Salts: Providing a Universal Strategy for Haloazidation of Alkenes. Chinese Journal of Chemistry 2024, 42, 1839–1845. doi:10.1002/cjoc.202400108
- Lin, K.; Lan, J.; Hao, L.; Zhu, T. Electrochemical N-olefination for the regio- and stereo-selective synthesis of vinyl azoles. Green Synthesis and Catalysis 2024. doi:10.1016/j.gresc.2024.01.005
- Kánya, N.; Zsigmond, T. S.; Hergert, T.; Lövei, K.; Dormán, G.; Kálmán, F.; Darvas, F. Click Reactions Meet Flow Chemistry: An Overview of the Applications of Click Chemistry under Continuous Flow Conditions. Organic Process Research & Development 2023, 28, 1288–1307. doi:10.1021/acs.oprd.3c00364
- Chen, J.; Deng, Y.; Fu, H.; Yun, H.; He, H. Transition-metal-free synthesis of (Z)-N1-vinyl-benzotriazoles from 1-arylmethylbenzotriazoles and arylaldehydes. Tetrahedron 2023, 146, 133625. doi:10.1016/j.tet.2023.133625
- Brufani, G.; Valentini, F.; Rossini, G.; Rosignoli, L.; Gu, Y.; Liu, P.; Vaccaro, L. Waste-minimized continuous flow copper-catalyzed azide-alkyne cycloaddition with low metal contamination. Green Synthesis and Catalysis 2023, 4, 154–159. doi:10.1016/j.gresc.2023.01.004
- Brufani, G.; Valentini, F.; Rossini, G.; Carpisassi, L.; Lanari, D.; Vaccaro, L. Continuous flow synthesis of 1,4-disubstituted 1,2,3-triazoles via consecutive β-azidation of α,β-unsaturated carbonyl compounds and CuAAC reactions. Green Chemistry 2023, 25, 2438–2445. doi:10.1039/d2gc04672e
- Saleh, L. Y.; Altıntaş, B.; Filiciotto, L.; Zorlu, Y.; Luque, R.; Ülger, M.; Döndaş, H. A.; Altug, C. Structural assessment of novel spiro-naphthalene-1.2'- [1,3,4]oxadiazol-4-ones prepared under batch and flow chemistry with a concise antifungal and anti(myco)bacterial activity. Tetrahedron 2023, 131, 133231. doi:10.1016/j.tet.2022.133231
- Drelinkiewicz, D.; Whitby, R. J. A practical flow synthesis of 1,2,3-triazoles. RSC advances 2022, 12, 28910–28915. doi:10.1039/d2ra04727f
- Kuhwald, C.; Türkhan, S.; Kirschning, A. Inductive heating and flow chemistry - a perfect synergy of emerging enabling technologies. Beilstein journal of organic chemistry 2022, 18, 688–706. doi:10.3762/bjoc.18.70
- George, V.; Kirschning, A. A Stable and Safe Form of Iodine Azide: Polymer-Bound Bisazidoiodate(I). SynOpen 2021, 05, 104–107. doi:10.1055/a-1480-8983
- Seemann, A.; Panten, J.; Kirschning, A. Flow Chemistry under Extreme Conditions: Synthesis of Macrocycles with Musklike Olfactoric Properties. The Journal of organic chemistry 2021, 86, 13924–13933. doi:10.1021/acs.joc.1c00663
- Alfano, A. I.; Brindisi, M.; Lange, H. Flow synthesis approaches to privileged scaffolds – recent routes reviewed for green and sustainable aspects. Green Chemistry 2021, 23, 2233–2292. doi:10.1039/d0gc03883k
- Sivaguru, P.; Ning, Y.; Bi, X. New Strategies for the Synthesis of Aliphatic Azides. Chemical reviews 2021, 121, 4253–4307. doi:10.1021/acs.chemrev.0c01124
- Reddy, G. S.; Anebouselvy, K.; Ramachary, D. B. [3+2]-Cycloaddition for Fully Decorated Vinyl-1,2,3-Triazoles: Design, Synthesis and Applications. Chemistry, an Asian journal 2020, 15, 2960–2983. doi:10.1002/asia.202000731
- Mata, A.; Weigl, U.; Flögel, O.; Baur, P.; Hone, C. A.; Kappe, C. O. Acyl azide generation and amide bond formation in continuous-flow for the synthesis of peptides. Reaction Chemistry & Engineering 2020, 5, 645–650. doi:10.1039/d0re00034e
- Brandão, P.; Pineiro, M.; Pinho e Melo, T. M. V. D. Flow Chemistry: Towards A More Sustainable Heterocyclic Synthesis. European Journal of Organic Chemistry 2019, 2019, 7188–7217. doi:10.1002/ejoc.201901335
- Neumann, S.; Biewend, M.; Rana, S.; Binder, W. H. The CuAAC: Principles, Homogeneous and Heterogeneous Catalysts, and Novel Developments and Applications. Macromolecular rapid communications 2019, 41, 1900359. doi:10.1002/marc.201900359
- Wang, W.; Tuci, G.; Duong-Viet, C.; Liu, Y.; Rossin, A.; Luconi, L.; Nhut, J.-M.; Nguyen-Dinh, L.; Pham-Huu, C.; Giambastiani, G. Induction Heating: An Enabling Technology for the Heat Management in Catalytic Processes. ACS Catalysis 2019, 9, 7921–7935. doi:10.1021/acscatal.9b02471
- Liu, Z.; Hao, W.; Liu, Z.; Gao, W.; Zhang, Z.; Zhang, Y.; Li, X.; Tong, L.; Tang, B. Bimetal-Catalyzed Cascade Reaction for Efficient Synthesis of N-Isopropenyl 1,2,3-Triazoles via In-Situ Generated 2-Azidopropenes. Chemistry, an Asian journal 2019, 14, 2149–2154. doi:10.1002/asia.201900402