Cite the Following Article
Coupled chemo(enzymatic) reactions in continuous flow
Ruslan Yuryev, Simon Strompen and Andreas Liese
Beilstein J. Org. Chem. 2011, 7, 1449–1467.
https://doi.org/10.3762/bjoc.7.169
How to Cite
Yuryev, R.; Strompen, S.; Liese, A. Beilstein J. Org. Chem. 2011, 7, 1449–1467. doi:10.3762/bjoc.7.169
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Ohde, D.; Kühn, S.; Liese, A. Enzyme Reactors and Process Control. Learning Materials in Biosciences; Springer International Publishing, 2024; pp 91–121. doi:10.1007/978-3-031-42999-6_5
- Tang, Z.; Oku, Y.; Matsuda, T. Application of Immobilized Enzymes in Flow Biocatalysis for Efficient Synthesis. Organic Process Research & Development 2024, 28, 1308–1326. doi:10.1021/acs.oprd.3c00405
- Thiele, I.; Yehia, H.; Krausch, N.; Birkholz, M.; Cruz Bournazou, M. N.; Sitanggang, A. B.; Kraume, M.; Neubauer, P.; Kurreck, A. Production of Modified Nucleosides in a Continuous Enzyme Membrane Reactor. International journal of molecular sciences 2023, 24, 6081. doi:10.3390/ijms24076081
- Schober, L.; Tonin, F.; Hanefeld, U.; Gröger, H. Combination of Asymmetric Organo‐ and Biocatalysis in Flow Processes and Comparison with their Analogous Batch Syntheses. European Journal of Organic Chemistry 2022, 2022. doi:10.1002/ejoc.202101035
- Williams, V.; Cui, Y.; Zhao, J.; Fu, H.; Jiao, X.; Ma, Y.; Li, X.; Du, X.; Zhang, N. Highly Efficient Production of Optically Active (R)-Tetrahydrothiophene-3-ol in Batch and Continuous Flow by Using Immobilized Ketoreductase. Organic Process Research & Development 2022, 26, 1984–1995. doi:10.1021/acs.oprd.1c00383
- Kracher, D.; Kourist, R. Recent developments in compartmentalization of chemoenzymatic cascade reactions. Current Opinion in Green and Sustainable Chemistry 2021, 32, 100538. doi:10.1016/j.cogsc.2021.100538
- Souto, J. A. Continuous‐flow preparation of benzotropolones: combined batch and flow synthesis of epigenetic modulators of the (JmjC)‐containing domain. ChemistrySelect 2021, 6, 10717–10721. doi:10.1002/slct.202102457
- Salvi, H. M.; Yadav, G. D. Process intensification using immobilized enzymes for the development of white biotechnology. Catalysis Science & Technology 2021, 11, 1994–2020. doi:10.1039/d1cy00020a
- Liu, H.; Tegl, G.; Nidetzky, B. Glycosyltransferase Co‐Immobilization for Natural Product Glycosylation: Cascade Biosynthesis of the C‐Glucoside Nothofagin with Efficient Reuse of Enzymes. Advanced Synthesis & Catalysis 2021, 363, 2157–2169. doi:10.1002/adsc.202001549
- Leslie, A.; Moody, T. S.; Smyth, M.; Wharry, S.; Baumann, M. Coupling biocatalysis with high-energy flow reactions for the synthesis of carbamates and β-amino acid derivatives. Beilstein journal of organic chemistry 2021, 17, 379–384. doi:10.3762/bjoc.17.33
- Santi, M.; Sancineto, L.; Nascimento, V.; Azeredo, J. B.; Orozco, E. V. M.; Andrade, L. H.; Gröger, H.; Santi, C. Flow Biocatalysis: A Challenging Alternative for the Synthesis of APIs and Natural Compounds. International journal of molecular sciences 2021, 22, 990. doi:10.3390/ijms22030990
- De Santis, P.; Meyer, L.-E.; Kara, S. The rise of continuous flow biocatalysis – fundamentals, very recent developments and future perspectives. Reaction Chemistry & Engineering 2020, 5, 2155–2184. doi:10.1039/d0re00335b
- Hastings, C. J.; Adams, N. P.; Bushi, J.; Kolb, S. J. One-pot chemoenzymatic reactions in water enabled by micellar encapsulation. Green Chemistry 2020, 22, 6187–6193. doi:10.1039/d0gc01989e
- Hartman, R. L. Flow chemistry remains an opportunity for chemists and chemical engineers. Current Opinion in Chemical Engineering 2020, 29, 42–50. doi:10.1016/j.coche.2020.05.002
- Chen, J.; Li, J.; Li, Q.; Wang, S.; Wang, L.; Liu, H.; Fan, C. Engineering a chemoenzymatic cascade for sustainable photobiological hydrogen production with green algae. Energy & Environmental Science 2020, 13, 2064–2068. doi:10.1039/d0ee00993h
- Li, Z.; Bavaro, T.; Tengattini, S.; Bernardini, R.; Mattei, M.; Annunziata, F.; Cole, R. B.; Zheng, C.; Sollogoub, M.; Tamborini, L.; Terreni, M.; Zhang, Y. Chemoenzymatic synthesis of arabinomannan (AM) glycoconjugates as potential vaccines for tuberculosis. European journal of medicinal chemistry 2020, 204, 112578. doi:10.1016/j.ejmech.2020.112578
- Maywald, M. doi:10.1002/9783527809080.cataz03480
- Baumer, B.; Classen, T.; Pohl, M.; Pietruszka, J. Efficient Nicotinamide Adenine Dinucleotide Phosphate [NADP(H)] Recycling in Closed‐Loop Continuous Flow Biocatalysis. Advanced Synthesis & Catalysis 2020, 362, 2894–2901. doi:10.1002/adsc.202000058
- Higashio, K.; Katsuragi, S.; Kundu, D.; Adebar, N.; Plass, C.; Kühn, F.; Gröger, H.; Akai, S. Continuous‐Flow Dynamic Kinetic Resolution of Racemic Alcohols by Lipase–Oxovanadium Cocatalysis. European Journal of Organic Chemistry 2020, 2020, 1961–1967. doi:10.1002/ejoc.202000186
- Cosgrove, S. C.; Mattey, A. P.; Riese, M.; Chapman, M. R.; Birmingham, W. R.; Blacker, A. J.; Kapur, N.; Turner, N. J.; Flitsch, S. L. Biocatalytic Oxidation in Continuous Flow for the Generation of Carbohydrate Dialdehydes. ACS Catalysis 2019, 9, 11658–11662. doi:10.1021/acscatal.9b04819