The application of a monolithic triphenylphosphine reagent for conducting Appel reactions in flow microreactors

Kimberley A. Roper, Heiko Lange, Anastasios Polyzos, Malcolm B. Berry, Ian R. Baxendale and Steven V. Ley
Beilstein J. Org. Chem. 2011, 7, 1648–1655. https://doi.org/10.3762/bjoc.7.194

Supporting Information

Supporting information features full experimental details and data for the reactions performed above.

Supporting Information File 1: Experimental details.
Format: PDF Size: 239.0 KB Download

Cite the Following Article

The application of a monolithic triphenylphosphine reagent for conducting Appel reactions in flow microreactors
Kimberley A. Roper, Heiko Lange, Anastasios Polyzos, Malcolm B. Berry, Ian R. Baxendale and Steven V. Ley
Beilstein J. Org. Chem. 2011, 7, 1648–1655. https://doi.org/10.3762/bjoc.7.194

How to Cite

Roper, K. A.; Lange, H.; Polyzos, A.; Berry, M. B.; Baxendale, I. R.; Ley, S. V. Beilstein J. Org. Chem. 2011, 7, 1648–1655. doi:10.3762/bjoc.7.194

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Fuenzalida, N. M. D. R.; Alme, E.; Lundevall, F. J.; Bjørsvik, H.-R. An environmentally benign and high-rate Appel type reaction. Reaction Chemistry & Engineering 2022, 7, 1650–1659. doi:10.1039/d2re00071g
  • Chen, J.; Xie, X.; Liu, J.; Yu, Z.; Su, W. Revisiting aromatic diazotization and aryl diazonium salts in continuous flow: highlighted research during 2001–2021. Reaction Chemistry & Engineering 2022, 7, 1247–1275. doi:10.1039/d2re00001f
  • Rossouw, N. P.; Rizzacasa, M. A.; Polyzos, A. Flow-Assisted Synthesis of Alkyl Citrate Natural Products. The Journal of organic chemistry 2021, 86, 14223–14231. doi:10.1021/acs.joc.1c01645
  • Tadros, J.; Dankers, C.; Aldrich-Wright, J. R.; Polyzos, A.; Gordon, C. P. A Solid-Phase Assisted Flow Approach to In Situ Wittig-Type Olefination Coupling. European Journal of Organic Chemistry 2021, 2021, 4184–4194. doi:10.1002/ejoc.202100761
  • Kowalewski, E.; Zawadzki, B.; Matus, K.; Nikiforow, K.; Śrębowata, A. Continuous-flow hydrogenation over resin supported palladium catalyst for the synthesis of industrially relevant chemicals. Reaction Kinetics, Mechanisms and Catalysis 2021, 132, 717–728. doi:10.1007/s11144-020-01922-5
  • De, S. K. doi:10.1002/9783527828166.ch4
  • Gopi, C.; Krupamai, G.; Sri, C. S.; Dhanaraju, M. D. An overview of recent progress in modern synthetic approach—combinatorial synthesis. Beni-Suef University Journal of Basic and Applied Sciences 2020, 9, 1–37. doi:10.1186/s43088-020-00083-7
  • Buonomo, J. A.; Cole, M. S.; Eiden, C. G.; Aldrich, C. C. 1,3-Diphenyldisiloxane Enables Additive-Free Redox Recycling Reactions and Catalysis with Triphenylphosphine. Synthesis 2020, 52, 3583–3594. doi:10.1055/s-0040-1707345
  • Morodo, R.; Bianchi, P.; Monbaliu, J.-C. Continuous Flow Organophosphorus Chemistry. European Journal of Organic Chemistry 2020, 2020, 5236–5277. doi:10.1002/ejoc.202000430
  • Du, Y.; Barber, T.; Lim, S. E.; Rzepa, H.; Baxendale, I. R.; Whiting, A. A solid-supported arylboronic acid catalyst for direct amidation. Chemical communications (Cambridge, England) 2019, 55, 2916–2919. doi:10.1039/c8cc09913h
  • Ramaotsoa, G. V.; Strydom, I.; Panayides, J.-L.; Riley, D. L. Immobilized tetrakis(triphenylphosphine)palladium(0) for Suzuki–Miyaura coupling reactions under flow conditions. Reaction Chemistry & Engineering 2019, 4, 372–382. doi:10.1039/c8re00235e
  • Das, R.; Kapur, M. Palladium-Catalyzed, ortho-Selective C–H Halogenation of Benzyl Nitriles, Aryl Weinreb Amides, and Anilides. The Journal of organic chemistry 2017, 82, 1114–1126. doi:10.1021/acs.joc.6b02731
  • Zhou, H.; Chen, Y.; Plummer, C. M.; Huang, H.; Chen, Y. Facile and efficient bromination of hydroxyl-containing polymers to synthesize well-defined brominated polymers. Polymer Chemistry 2017, 8, 2189–2196. doi:10.1039/c7py00283a
  • Movsisyan, M.; Delbeke, E.; Berton, J.; Battilocchio, C.; Ley, S. V.; Stevens, C. V. Taming hazardous chemistry by continuous flow technology. Chemical Society reviews 2016, 45, 4892–4928. doi:10.1039/c5cs00902b
  • Glasnov, T. N. Continuous-Flow Chemistry in the Research Laboratory - Organic Synthesis in Dedicated Continuous Flow Systems: Further Chemistry Examples. Continuous-Flow Chemistry in the Research Laboratory; Springer International Publishing, 2016; pp 93–112. doi:10.1007/978-3-319-32196-7_10
  • Barlow, K. J.; Bernabeu, V.; Hao, X.; Hughes, T. C.; Hutt, O. E.; Polyzos, A.; Turner, K. A.; Moad, G. Triphenylphosphine-grafted, RAFT-synthesised, porous monoliths as catalysts for Michael addition in flow synthesis. Reactive and Functional Polymers 2015, 96, 89–96. doi:10.1016/j.reactfunctpolym.2015.09.008
  • Rojo, M. V.; Guetzoyan, L.; Baxendale, I. R. A monolith immobilised iridium Cp* catalyst for hydrogen transfer reactions under flow conditions. Organic & biomolecular chemistry 2015, 13, 1768–1777. doi:10.1039/c4ob02376e
  • Matsukawa, K.; Mitamura, K.; Watase, S.; Ishizuka, N. Present State of Flow Reactors and Development of Novel Column Reactor. Journal of Synthetic Organic Chemistry, Japan 2015, 73, 498–503. doi:10.5059/yukigoseikyokaishi.73.498
  • López‐Domínguez, P.; Hernández-Ortiz, J. C.; Barlow, K. J.; Vivaldo-Lima, E.; Moad, G. Modeling the Kinetics of Monolith Formation by RAFT Copolymerization of Styrene and Divinylbenzene. Macromolecular Reaction Engineering 2014, 8, 706–722. doi:10.1002/mren.201400013
  • Shi, L.; Zhang, D.; Lin, R.; Zhang, C.; Li, X.; Jiao, N. The direct C–H halogenations of indoles. Tetrahedron Letters 2014, 55, 2243–2245. doi:10.1016/j.tetlet.2014.02.071
Other Beilstein-Institut Open Science Activities