Exceptionally small supramolecular hydrogelators based on aromatic–aromatic interactions

Junfeng Shi, Yuan Gao, Zhimou Yang and Bing Xu
Beilstein J. Org. Chem. 2011, 7, 167–172. https://doi.org/10.3762/bjoc.7.23

Supporting Information

Supporting Information File 1: Experimental part.
Format: PDF Size: 292.1 KB Download

Cite the Following Article

Exceptionally small supramolecular hydrogelators based on aromatic–aromatic interactions
Junfeng Shi, Yuan Gao, Zhimou Yang and Bing Xu
Beilstein J. Org. Chem. 2011, 7, 167–172. https://doi.org/10.3762/bjoc.7.23

How to Cite

Shi, J.; Gao, Y.; Yang, Z.; Xu, B. Beilstein J. Org. Chem. 2011, 7, 167–172. doi:10.3762/bjoc.7.23

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Kleiner, S.; Wulf, V.; Bisker, G. Single-walled carbon nanotubes as near-infrared fluorescent probes for bio-inspired supramolecular self-assembled hydrogels. Journal of Colloid and Interface Science 2024. doi:10.1016/j.jcis.2024.05.098
  • Khan, N.; Shivhare, V.; Ahuja, R.; Dutt Konar, A. Designer Bio-inspired Hydrogels : A Key to Biomedical Challenges. Bioderived Materials: Harnessing Nature for Advanced Biochemical Handiwork; BENTHAM SCIENCE PUBLISHERS, 2024; pp 61–91. doi:10.2174/9789815136869124010006
  • Castelletto, V.; de Mello, L.; da Silva, E. R.; Seitsonen, J.; Hamley, I. W. Comparison of the self-assembly and cytocompatibility of conjugates of Fmoc (9-fluorenylmethoxycarbonyl) with hydrophobic, aromatic, or charged amino acids. Journal of peptide science : an official publication of the European Peptide Society 2024, 30, e3571. doi:10.1002/psc.3571
  • Castelletto, V.; de Mello, L.; da Silva, E. R.; Seitsonen, J.; Hamley, I. W. Self-Assembly and Cytocompatibility of Amino Acid Conjugates Containing a Novel Water-Soluble Aromatic Protecting Group. Biomacromolecules 2023, 24, 5403–5413. doi:10.1021/acs.biomac.3c00860
  • Huang, X.; Li, T.; Jiang, X.; Wang, Z.; Wang, M.; Wu, X.; Li, J.; Shi, J. Co-assembled Supramolecular Hydrogel of Salvianolic Acid B and a Phosphopeptide for Enhanced Wound Healing. ACS applied materials & interfaces 2023, 15, 45606–45615. doi:10.1021/acsami.3c09219
  • Khedr, A.; Soliman, M. A. N.; Elsawy, M. A. Design Rules for Self-Assembling Peptide Nanostructures. Peptide Bionanomaterials; Springer International Publishing, 2023; pp 1–52. doi:10.1007/978-3-031-29360-3_1
  • Hu, Y.; Fan, Y.; Chen, B.; Li, H.; Zhang, G.; Su, J. Stimulus-responsive peptide hydrogels: a safe and least invasive administration approach for tumor treatment. Journal of drug targeting 2023, 31, 745–761. doi:10.1080/1061186x.2023.2236332
  • Tiwari, O. S.; Rencus-Lazar, S.; Gazit, E. Peptide- and Metabolite-Based Hydrogels: Minimalistic Approach for the Identification and Characterization of Gelating Building Blocks. International journal of molecular sciences 2023, 24, 10330. doi:10.3390/ijms241210330
  • Chevigny, R.; Sitsanidis, E. D.; Schirmer, J.; Hulkko, E.; Myllyperkiö, P.; Nissinen, M.; Pettersson, M. Nanoscale Probing of the Supramolecular Assembly in a Two-Component Gel by Near-Field Infrared Spectroscopy. Chemistry (Weinheim an der Bergstrasse, Germany) 2023, 29, e202300155. doi:10.1002/chem.202300155
  • Hamley, I. W. Self-Assembly, Bioactivity, and Nanomaterials Applications of Peptide Conjugates with Bulky Aromatic Terminal Groups. ACS applied bio materials 2023, 6, 384–409. doi:10.1021/acsabm.2c01041
  • Khan, N.; Gupta, A.; Shivhare, V.; Ahuja, R.; Varshney, M.; Basu, A.; DuttKonar, A. A heterochiral diphenylalanine auxin derivative empowers remarkable mechanical integrity with promising Antiinflammatory and Antimicrobial Performances. New Journal of Chemistry 2022, 46, 18262–18270. doi:10.1039/d2nj03240f
  • Sitsanidis, E. D.; Kasapidou, P. M.; Hiscock, J. R.; Gubala, V.; Castel, H.; Popoola, P. I. A.; Hall, A. J.; Edwards, A. A. Probing the self-assembly and anti-glioblastoma efficacy of a cinnamoyl-capped dipeptide hydrogelator. Organic & biomolecular chemistry 2022, 20, 7458–7466. doi:10.1039/d2ob01339h
  • Abraham, B. L.; Mensah, S. G.; Gwinnell, B. R.; Nilsson, B. L. Side-chain halogen effects on self-assembly and hydrogelation of cationic phenylalanine derivatives. Soft matter 2022, 18, 5999–6008. doi:10.1039/d2sm00713d
  • Misra, R.; Tang, Y.; Chen, Y.; Chakraborty, P.; Netti, F.; Vijayakanth, T.; Shimon, L. J. W.; Wei, G.; Adler-Abramovich, L. Exploiting Minimalistic Backbone Engineered γ-Phenylalanine for the Formation of Supramolecular Co-Polymer. Macromolecular rapid communications 2022, 43, e2200223. doi:10.1002/marc.202200223
  • Li, X.; Wei, F.; Le, X.; Wang, L.; Wang, D.; Chen, C.; Xu, S.; Liao, X.; Zhao, Y. Solvent modulated structural transition of self-assemblies formed by bola-form hexapeptide amphiphiles. Journal of Molecular Liquids 2022, 355, 118940. doi:10.1016/j.molliq.2022.118940
  • Karmakar, S.; Patel, K.; Chauhan, P.; Reddy, J. P.; Prabhakaran, P. Design and construction of amino acids, peptides and proteins-based self-assembled nanostructures. Design, Principle and Application of Self-Assembled Nanobiomaterials in Biology and Medicine; Elsevier, 2022; pp 33–55. doi:10.1016/b978-0-323-90984-6.00010-6
  • Martin, C.; Ballet, S. Chapter 5:Self-assembling Hydrogels Based on Natural Building Blocks. Injectable Hydrogels for 3D Bioprinting; The Royal Society of Chemistry, 2021; pp 112–140. doi:10.1039/9781839163975-00112
  • Arokianathan, J. F.; Ramya, K. A.; Deshpande, A. P.; Leemarose, A.; Shanmugam, G. Supramolecular organogel based on di-Fmoc functionalized unnatural amino acid: An attempt to develop a correlation between molecular structure and ambidextrous gelation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021, 618, 126430. doi:10.1016/j.colsurfa.2021.126430
  • Panja, S.; Adams, D. J. Stimuli responsive dynamic transformations in supramolecular gels. Chemical Society reviews 2021, 50, 5165–5200. doi:10.1039/d0cs01166e
  • Balasco, N.; Diaferia, C.; Morelli, G.; Vitagliano, L.; Accardo, A. Amyloid-Like Aggregation in Diseases and Biomaterials: Osmosis of Structural Information. Frontiers in bioengineering and biotechnology 2021, 9, 641372. doi:10.3389/fbioe.2021.641372


  • WANG XIAOJUAN; LIN YINGWU; LI YANG; WEI CHUANWAN. Amino acid gelator, supramolecular hydrogel and preparation method of supramolecular hydrogel. CN 114656404 A, June 24, 2022.
Other Beilstein-Institut Open Science Activities