Gold-catalyzed propargylic substitutions: Scope and synthetic developments

Olivier Debleds, Eric Gayon, Emmanuel Vrancken and Jean-Marc Campagne
Beilstein J. Org. Chem. 2011, 7, 866–877. https://doi.org/10.3762/bjoc.7.99

Cite the Following Article

Gold-catalyzed propargylic substitutions: Scope and synthetic developments
Olivier Debleds, Eric Gayon, Emmanuel Vrancken and Jean-Marc Campagne
Beilstein J. Org. Chem. 2011, 7, 866–877. https://doi.org/10.3762/bjoc.7.99

How to Cite

Debleds, O.; Gayon, E.; Vrancken, E.; Campagne, J.-M. Beilstein J. Org. Chem. 2011, 7, 866–877. doi:10.3762/bjoc.7.99

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Cook, A.; Newman, S. G. Alcohols as Substrates in Transition-Metal-Catalyzed Arylation, Alkylation, and Related Reactions. Chemical reviews 2024, 124, 6078–6144. doi:10.1021/acs.chemrev.4c00094
  • Doraghi, F.; Mohammad Mahdavian, A.; Karimian, S.; Larijani, B.; Mahdavi, M. Recent Progress in Application of Propargylic Alcohols in Organic Syntheses. Advanced Synthesis & Catalysis 2023, 365, 2991–3019. doi:10.1002/adsc.202300646
  • Bera, N.; Lenka, B. S.; Bishi, S.; Samanta, S.; Sarkar, D. Gold(I)-Catalyzed Synthesis of Heterocycles via Allene Oxide from Propargylic Alcohols. The Journal of organic chemistry 2022, 87, 9729–9754. doi:10.1021/acs.joc.2c00780
  • Jónsson, H. F.; Solvi, T. N.; Lomeland, S.; Reiersølmoen, A. C.; Fiksdahl, A. Tunable Gold-catalyzed Reactions of Propargyl Alcohols and Aryl Nucleophiles. ChemistryOpen 2022, 11, e202200030. doi:10.1002/open.202200030
  • Cordero, F. M.; Giomi, D.; Machetti, F. 4.03 – Isoxazoles. Comprehensive Heterocyclic Chemistry IV; Elsevier, 2022; Vol. 4, pp 308–434. doi:10.1016/b978-0-12-818655-8.00135-9
  • Morita, N.; Tamura, O. Strategic Use of Difference of Valence of Gold Catalysts: Development of Cyclization Reactions Oriented toward Synthetic Diversity Using Propargylic Alcohols. Journal of Synthetic Organic Chemistry, Japan 2021, 79, 652–663. doi:10.5059/yukigoseikyokaishi.79.652
  • Zhang, S.; Li, L.; Li, J.; Shi, J.; Xu, K.; Gao, W.; Zong, L.; Li, G.; Findlater, M. Electrochemical Arylation of Aldehydes, Ketones, and Alcohols: from Cathodic Reduction to Convergent Paired Electrolysis. Angewandte Chemie (International ed. in English) 2021, 60, 7275–7282. doi:10.1002/anie.202015230
  • Zhang, S.; Li, L.; Li, J.; Shi, J.; Xu, K.; Gao, W.; Zong, L.; Li, G.; Findlater, M. Electrochemical Arylation of Aldehydes, Ketones, and Alcohols: from Cathodic Reduction to Convergent Paired Electrolysis. Angewandte Chemie 2021, 133, 7351–7358. doi:10.1002/ange.202015230
  • Tsuji, H.; Kawatsura, M. Transition‐Metal‐Catalyzed Propargylic Substitution of Propargylic Alcohol Derivatives Bearing an Internal Alkyne Group. Asian Journal of Organic Chemistry 2020, 9, 1924–1941. doi:10.1002/ajoc.202000422
  • Pradhan, T. R.; Park, J. K. An Overview of Water‐Mediated Alkyne Functionalization by Neighboring Group Participation of Carbonyl Groups. Advanced Synthesis & Catalysis 2020, 362, 4833–4860. doi:10.1002/adsc.202000826
  • Oseghale, C. O.; Mogudi, B. M.; Akinnawo, C. A.; Meijboom, R. in-situ generation of surface-active HCo(CO)y like intermediate from gold supported on ion-promoted Co3O4 for induced hydroformylation-hydrogenation of alkenes to alcohols. Applied Catalysis A: General 2020, 602, 117735. doi:10.1016/j.apcata.2020.117735
  • Noël, F.; Vuković, V. D.; Yi, J.; Richmond, E.; Kravljanac, P.; Moran, J. Catalytic Synthesis of Trifluoromethylated Allenes, Indenes, Chromenes, and Olefins from Propargylic Alcohols in HFIP. The Journal of organic chemistry 2019, 84, 15926–15947. doi:10.1021/acs.joc.9b02398
  • Schmidt, E. Y.; Bidusenko, I. A.; Protsuk, N. I.; Demyanov, Y. V.; Ushakov, I. A.; Trofimov, B. A. Superbase-Promoted Addition of Acetylene Gas to the C=N Bond. European Journal of Organic Chemistry 2019, 2019, 5875–5881. doi:10.1002/ejoc.201900932
  • Miao, C.; Zhuang, H.; Wen, Y.; Han, F.; Yang, Q.-F.; Yang, L.; Li, Z.; Xia, C. Efficient Thiolation of Alcohols Catalyzed by Long Chained Acid-Functionalized Ionic Liquids under Mild Conditions. European Journal of Organic Chemistry 2019, 2019, 3012–3021. doi:10.1002/ejoc.201900169
  • Praveen, C. Dexterity of gold catalysis in controlling the regioselectivity of cycloaddition reactions. Catalysis Reviews 2019, 61, 406–446. doi:10.1080/01614940.2019.1594016
  • Alyabyev, S. B.; Beletskaya, I. P. Gold as a catalyst. Part II. Alkynes in the reactions of carbon – carbon bond formation. Russian Chemical Reviews 2018, 87, 984–1047. doi:10.1070/rcr4815
  • Roy, R.; Saha, S. Scope and advances in the catalytic propargylic substitution reaction. RSC advances 2018, 8, 31129–31193. doi:10.1039/c8ra04481c
  • Iwasawa, N.; Watanabe, S.; Ario, A.; Sogo, H. Re(I)-Catalyzed Hydropropargylation of Silyl Enol Ethers Utilizing Dynamic Interconversion of Vinylidene-Alkenylmetal Intermediates via 1,5-Hydride Transfer. Journal of the American Chemical Society 2018, 140, 7769–7772. doi:10.1021/jacs.8b02903
  • Brandi, A.; Cardona, F.; Cicchi, S.; Cordero, F. M.; Goti, A. Organic Reactions; Wiley, 2017; pp 1–321. doi:10.1002/0471264180.or094.01
  • Shan, C.; Chen, F.; Pan, J.; Gao, Y.; Xu, P.; Zhao, Y. Zn(OTf)2-Catalyzed Phosphinylation of Propargylic Alcohols: Access to γ-Ketophosphine Oxides. The Journal of organic chemistry 2017, 82, 11659–11666. doi:10.1021/acs.joc.7b02164
Other Beilstein-Institut Open Science Activities