(How) does 1,3,5-triethylbenzene scaffolding work? Analyzing the abilities of 1,3,5-triethylbenzene- and 1,3,5-trimethylbenzene-based scaffolds to preorganize the binding elements of supramolecular hosts and to improve binding of targets

Xing Wang and Fraser Hof
Beilstein J. Org. Chem. 2012, 8, 1–10. https://doi.org/10.3762/bjoc.8.1

Cite the Following Article

(How) does 1,3,5-triethylbenzene scaffolding work? Analyzing the abilities of 1,3,5-triethylbenzene- and 1,3,5-trimethylbenzene-based scaffolds to preorganize the binding elements of supramolecular hosts and to improve binding of targets
Xing Wang and Fraser Hof
Beilstein J. Org. Chem. 2012, 8, 1–10. https://doi.org/10.3762/bjoc.8.1

How to Cite

Wang, X.; Hof, F. Beilstein J. Org. Chem. 2012, 8, 1–10. doi:10.3762/bjoc.8.1

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Pang, X.-Y.; Zhou, H.; Xie, X.; Jiang, W.; Yang, Y.; Sessler, J. L.; Gong, H.-Y. 1,3,5-2,4,6-Functionalized Benzene Molecular Cage: An Environmentally Responsive Scaffold that Supports Hierarchical Superstructures. Angewandte Chemie (International ed. in English) 2024, 63, e202407805. doi:10.1002/anie.202407805
  • Pang, X.; Zhou, H.; Xie, X.; Jiang, W.; Yang, Y.; Sessler, J. L.; Gong, H. 1,3,5–2,4,6‐Functionalized Benzene Molecular Cage: An Environmentally Responsive Scaffold that Supports Hierarchical Superstructures. Angewandte Chemie 2024, 136. doi:10.1002/ange.202407805
  • Rondelli, M.; Pasán, J.; Fernández, I.; Martín, T. Predisposition in Dynamic Covalent Chemistry: The Role of Non-Covalent Interactions in the Assembly of Tetrahedral Boronate Cages. Chemistry (Weinheim an der Bergstrasse, Germany) 2024, 30, e202400896. doi:10.1002/chem.202400896
  • Weiße, A.; Seichter, W.; Mazik, M. Supramolecular Motifs in the Crystal Structures of Triethylbenzene Derivatives Bearing Pyridinium Subunits in Combination with Pyrimidinyl or Pyridinyl Groups. Molecules (Basel, Switzerland) 2023, 28, 6485. doi:10.3390/molecules28186485
  • Happonen, L.; Mattila, M.; Peshev, I.; Lehikoinen, A.; Valkonen, A. Thiourea-Based Tritopic Halogen-Bonding Acceptors. Chemistry, an Asian journal 2023, 18, e202300031. doi:10.1002/asia.202300031
  • Saccone, M.; Cametti, M.; Metrangolo, P.; Pilati, T.; Resnati, G.; Terraneo, G. Systematic Study of Podand Molecules for Synergistic Halogen and Hydrogen Bond-Driven Anion Recognition in the Solid State. Chemistry, an Asian journal 2023, 18, e202201255. doi:10.1002/asia.202201255
  • Rondelli, M.; Daranas, A. H.; Martín, T. Importance of Precursor Adaptability in the Assembly of Molecular Organic Cages. The Journal of organic chemistry 2023, 88, 2113–2121. doi:10.1021/acs.joc.2c02523
  • Ebersbach, B.; Seichter, W.; Schwarzer, A.; Mazik, M. Supramolecular patterns in the crystal structures of 1,3,5-trisubstituted 2,4,6-triethylbenzenes bearing halogenophenoxy groups. CrystEngComm 2022, 25, 137–153. doi:10.1039/d2ce01203k
  • Shaffer, C. C.; Oliver, A. G.; Smith, B. D. Co-crystals of tetrachloroauric acid and 1,3,5-(methylacetamide)benzene-based tectons: consistent trapping of high energy molecular conformation. CrystEngComm 2022, 24, 3879–3885. doi:10.1039/d2ce00463a
  • Parks, F. C.; Sheetz, E. G.; Stutsman, S. R.; Lutolli, A.; Debnath, S.; Raghavachari, K.; Flood, A. H. Revealing the Hidden Costs of Organization in Host-Guest Chemistry Using Chloride-Binding Foldamers and Their Solvent Dependence. Journal of the American Chemical Society 2022, 144, 1274–1287. doi:10.1021/jacs.1c10758
  • Kotha, S.; Solanke, B.; Gupta, N. K. Design and synthesis of C3-symmetric molecules containing oxepine and benzofuran moieties via Metathesis. Journal of Molecular Structure 2021, 1244, 130907. doi:10.1016/j.molstruc.2021.130907
  • Thomas, C. M.; Foyle, É. M.; Walker, S. E.; White, N. G. An Investigation of Five Component [3+2] Self-Assembled Cage Formation Using amidinium...carboxylate Hydrogen Bonds. Australian Journal of Chemistry 2021, 74, 787–794. doi:10.1071/ch21101
  • Stapf, M.; Seichter, W.; Mazik, M. Cycloalkyl groups as subunits of artificial carbohydrate receptors Effect of ring size of the cycloalkyl unit on the receptor efficiency. European Journal of Organic Chemistry 2020, 2020, 4900–4915. doi:10.1002/ejoc.202000803
  • Foyle, É. M.; White, N. G. Anion Templated Crystal Engineering of Halogen Bonding Tripodal Tris(halopyridinium) Compounds. CrystEngComm 2020, 22, 2526–2536. doi:10.1039/d0ce00241k
  • Jia, F.; Hupatz, H.; Yang, L.-P.; Schröder, H. V.; Li, D.-H.; Xin, S.; Lentz, D.; Witte, F.; Xie, X.; Paulus, B.; Schalley, C. A.; Jiang, W. Naphthocage: A Flexible yet Extremely Strong Binder for Singly Charged Organic Cations. Journal of the American Chemical Society 2019, 141, 4468–4473. doi:10.1021/jacs.9b00445
  • Schick, T. H. G.; Lauer, J. C.; Rominger, F.; Mastalerz, M. Transformation of Imine Cages into Hydrocarbon Cages. Angewandte Chemie 2019, 131, 1782–1787. doi:10.1002/ange.201814243
  • Schick, T. H. G.; Lauer, J. C.; Rominger, F.; Mastalerz, M. Transformation of Imine Cages into Hydrocarbon Cages. Angewandte Chemie (International ed. in English) 2019, 58, 1768–1773. doi:10.1002/anie.201814243
  • McGlinchey, M. J. Hexaethylbenzene: A Sterically Crowded Arene and Conformationally Versatile Ligand. ChemPlusChem 2018, 83, 480–499. doi:10.1002/cplu.201800045
  • Lauer, J. C.; Zhang, W.-S.; Rominger, F.; Schröder, R. R.; Mastalerz, M. Shape-Persistent [4+4] Imine Cages with a Truncated Tetrahedral Geometry. Chemistry (Weinheim an der Bergstrasse, Germany) 2018, 24, 1816–1820. doi:10.1002/chem.201705713
  • Leoncini, A.; Huskens, J.; Verboom, W. Ligands for f-element extraction used in the nuclear fuel cycle. Chemical Society reviews 2017, 46, 7229–7273. doi:10.1039/c7cs00574a
Other Beilstein-Institut Open Science Activities