Modulating the activity of short arginine-tryptophan containing antibacterial peptides with N-terminal metallocenoyl groups

H. Bauke Albada, Alina-Iulia Chiriac, Michaela Wenzel, Maya Penkova, Julia E. Bandow, Hans-Georg Sahl and Nils Metzler-Nolte
Beilstein J. Org. Chem. 2012, 8, 1753–1764. https://doi.org/10.3762/bjoc.8.200

Cite the Following Article

Modulating the activity of short arginine-tryptophan containing antibacterial peptides with N-terminal metallocenoyl groups
H. Bauke Albada, Alina-Iulia Chiriac, Michaela Wenzel, Maya Penkova, Julia E. Bandow, Hans-Georg Sahl and Nils Metzler-Nolte
Beilstein J. Org. Chem. 2012, 8, 1753–1764. https://doi.org/10.3762/bjoc.8.200

How to Cite

Albada, H. B.; Chiriac, A.-I.; Wenzel, M.; Penkova, M.; Bandow, J. E.; Sahl, H.-G.; Metzler-Nolte, N. Beilstein J. Org. Chem. 2012, 8, 1753–1764. doi:10.3762/bjoc.8.200

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Saleh, M.; Mostafa, Y. A.; Kumari, J.; Thabet, M. M.; Sriram, D.; Kandeel, M.; Abdu-Allah, H. H. M. New nitazoxanide derivatives: design, synthesis, biological evaluation, and molecular docking studies as antibacterial and antimycobacterial agents. RSC medicinal chemistry 2023, 14, 2714–2730. doi:10.1039/d3md00449j
  • Quadros Barsé, L.; Ulfig, A.; Varatnitskaya, M.; Vázquez-Hernández, M.; Yoo, J.; Imann, A. M.; Lupilov, N.; Fischer, M.; Becker, K.; Bandow, J. E.; Leichert, L. I. Comparison of the mechanism of antimicrobial action of the gold(I) compound auranofin in Gram-positive and Gram-negative bacteria. Cold Spring Harbor Laboratory 2023. doi:10.1101/2023.12.04.569911
  • Olshvang, E.; Fritsch, S.; Scholtyssek, O. C.; Schalk, I. J.; Metzler-Nolte, N. Vectorization via Siderophores Increases Antibacterial Activity of K(RW)3 Peptides against Pseudomonas aeruginosa. Chemistry (Weinheim an der Bergstrasse, Germany) 2023, 29, e202300364. doi:10.1002/chem.202300364
  • Suresh, D.; Goh, P. S.; Ismail, A. F.; Wong, T. W. Insights into biofouling in reverse osmosis membrane: A comprehensive review on techniques for biofouling assay. Journal of Environmental Chemical Engineering 2023, 11, 110317. doi:10.1016/j.jece.2023.110317
  • Duque, H. M.; Rodrigues, G.; Santos, L. S.; Franco, O. L. The biological role of charge distribution in linear antimicrobial peptides. Expert opinion on drug discovery 2023, 18, 287–302. doi:10.1080/17460441.2023.2173736
  • Kovačević, M.; Markulin, D.; Zelenika, M.; Marjanović, M.; Lovrić, M.; Polančec, D.; Ivančić, M.; Mrvčić, J.; Molčanov, K.; Milašinović, V.; Roca, S.; Kodrin, I.; Barišić, L. Hydrogen Bonding Drives Helical Chirality via 10-Membered Rings in Dipeptide Conjugates of Ferrocene-1,1'-Diamine. International journal of molecular sciences 2022, 23, 12233. doi:10.3390/ijms232012233
  • Majura, J. J.; Cao, W.; Chen, Z.; Htwe, K. K.; Li, W.; Du, R.; Zhang, P.; Zheng, H.; Gao, J. The current research status and strategies employed to modify food-derived bioactive peptides. Frontiers in nutrition 2022, 9, 950823. doi:10.3389/fnut.2022.950823
  • Khemaissa, S.; Walrant, A.; Sagan, S. Tryptophan, more than just an interfacial amino acid in the membrane activity of cationic cell-penetrating and antimicrobial peptides. Quarterly reviews of biophysics 2022, 55, e10. doi:10.1017/s0033583522000105
  • Silva, A. R. P.; Guimarães, M. S.; Rabelo, J.; Belén, L. H.; Perecin, C. J.; Farías, J. G.; Santos, J. H. P. M.; Rangel-Yagui, C. O. Recent advances in the design of antimicrobial peptide conjugates. Journal of materials chemistry. B 2022, 10, 3587–3600. doi:10.1039/d1tb02757c
  • Barbosa, M.; Simões, H.; Pinto, S. N.; Macedo, A. S.; Fonte, P.; Prazeres, D. M. F. Fusions of a carbohydrate binding module with the small cationic hexapeptide RWRWRW confer antimicrobial properties to cellulose-based materials. Acta biomaterialia 2022, 143, 216–232. doi:10.1016/j.actbio.2022.02.042
  • Rukh, G.; Ullah, A.; Khattak, R.; Fazil, P.; Ali, A.; Shah, M. R.; Khan, M. S.; Alsubaie, A. S.; Mahmoud, K. H.; Ateeq, M. Conjugation of Antimicrobial Peptide to Zinc Phthalocyanine for an Efficient Photodynamic Antimicrobial Chemotherapy. Coatings 2022, 12, 200. doi:10.3390/coatings12020200
  • Neuditschko, B.; Keppler, B. K.; Gerner, C.; Meier-Menches, S. M. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering - Organometallic Receptors and Conjugates With Biomolecules in Bioorganometallic Chemistry. Comprehensive Organometallic Chemistry IV; Elsevier, 2022; pp 183–205. doi:10.1016/b978-0-12-820206-7.00054-8
  • Cheng, Q.; Zeng, P. Hydrophobic-hydrophilic Alternation: An effective Pattern to de novo Designed Antimicrobial Peptides. Current pharmaceutical design 2022, 28, 3527–3537. doi:10.2174/1381612828666220902124856
  • König, G.; Sokkar, P.; Pryk, N.; Heinrich, S.; Möller, D.; Cimicata, G.; Matzov, D.; Dietze, P.; Thiel, W.; Bashan, A.; Bandow, J. E.; Zuegg, J.; Yonath, A.; Schulz, F.; Sanchez-Garcia, E. Rational prioritization strategy allows the design of macrolide derivatives that overcome antibiotic resistance. Proceedings of the National Academy of Sciences of the United States of America 2021, 118. doi:10.1073/pnas.2113632118
  • Gómez, J.; Sierra, D.; Ojeda, C.; Thavalingam, S.; Miller, R. G.; Guzmán, F.; Metzler-Nolte, N. Solid-phase synthesis and evaluation of linear and cyclic ferrocenoyl/ruthenocenoyl water-soluble hexapeptides as potential antibacterial compounds. Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry 2021, 26, 599–615. doi:10.1007/s00775-021-01877-5
  • Burmeister, H.; Dietze, P.; Preu, L.; Bandow, J. E.; Ott, I. Evaluation of Ruthenium(II) N-Heterocyclic Carbene Complexes as Antibacterial Agents and Inhibitors of Bacterial Thioredoxin Reductase. Molecules (Basel, Switzerland) 2021, 26, 4282. doi:10.3390/molecules26144282
  • Zhang, D.; Jingyi, C.; Jing, Q.; Chen, Z.; Ullah, A.; Jiang, L.; Zheng, K.; Yuan, C.; Huang, M. Development of a Potent Antimicrobial Peptide With Photodynamic Activity. Frontiers in microbiology 2021, 12, 624465. doi:10.3389/fmicb.2021.624465
  • Wenzel, M.; Dekker, M. P.; Wang, B.; Burggraaf, M. J.; Bitter, W.; van Weering, J. R.; Hamoen, L. W. A flat embedding method for transmission electron microscopy reveals an unknown mechanism of tetracycline. Communications biology 2021, 4, 306. doi:10.1038/s42003-021-01809-8
  • Chauhan, S.; Dhawan, D. K.; Saini, A.; Preet, S. Antimicrobial peptides against colorectal cancer-a focused review. Pharmacological research 2021, 167, 105529. doi:10.1016/j.phrs.2021.105529
  • Senges, C. H. R.; Stepanek, J. J.; Wenzel, M.; Raatschen, N.; Ay, Ü.; Märtens, Y.; Prochnow, P.; Hernández, M. V.; Yayci, A.; Schubert, B.; Janzing, N. B.; Warmuth, H. L.; Kozik, M.; Bongard, J.; Alumasa, J. N.; Albada, B.; Penkova, M.; Lukežič, T.; Sorto, N. A.; Lorenz, N.; Miller, R. G.; Zhu, B.; Benda, M.; Stülke, J.; Schäkermann, S.; Leichert, L. I.; Scheinpflug, K.; Brötz-Oesterhelt, H.; Hertweck, C.; Shaw, J. T.; Petković, H.; Brunel, J. M.; Keiler, K. C.; Metzler-Nolte, N.; Bandow, J. E. Comparison of Proteomic Responses as Global Approach to Antibiotic Mechanism of Action Elucidation. Antimicrobial agents and chemotherapy 2020, 65. doi:10.1128/aac.01373-20

Patents

  • SHIH CHIAHO; CHEN HENG-LI; SU PEI-YI. Antimicrobial peptides derived from hepatitis B virus core protein arginine-rich domain. US 10752657 B2, Aug 25, 2020.
  • SVENDSEN JOHN SIGURD; REKDAL ØYSTEIN; EKSTEEN JOHANNES. Anti-lymphoma peptides. US 10287320 B2, May 14, 2019.
  • SHIH CHIAHO; CHEN HENG-LI; SU PEI-YI. MODIFIED ANTIMICROBIAL PEPTIDE DERIVED FROM AN ARGININE-RICH DOMAIN. WO 2017205631 A1, Nov 30, 2017.
Other Beilstein-Institut Open Science Activities