Dimerization of a cell-penetrating peptide leads to enhanced cellular uptake and drug delivery

Jan Hoyer, Ulrich Schatzschneider, Michaela Schulz-Siegmund and Ines Neundorf
Beilstein J. Org. Chem. 2012, 8, 1788–1797. https://doi.org/10.3762/bjoc.8.204

Cite the Following Article

Dimerization of a cell-penetrating peptide leads to enhanced cellular uptake and drug delivery
Jan Hoyer, Ulrich Schatzschneider, Michaela Schulz-Siegmund and Ines Neundorf
Beilstein J. Org. Chem. 2012, 8, 1788–1797. https://doi.org/10.3762/bjoc.8.204

How to Cite

Hoyer, J.; Schatzschneider, U.; Schulz-Siegmund, M.; Neundorf, I. Beilstein J. Org. Chem. 2012, 8, 1788–1797. doi:10.3762/bjoc.8.204

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Salluce, G.; Folgar‐Cameán, Y.; Barba‐Bon, A.; Nikšić‐Franjić, I.; El Anwar, S.; Grüner, B.; Lostalé‐Seijo, I.; Nau, W. M.; Montenegro, J. Size and Polarizability of Boron Cluster Carriers Modulate Chaotropic Membrane Transport. Angewandte Chemie 2024, 136. doi:10.1002/ange.202404286
  • Salluce, G.; Folgar-Cameán, Y.; Barba-Bon, A.; Nikšić-Franjić, I.; El Anwar, S.; Grüner, B.; Lostalé-Seijo, I.; Nau, W. M.; Montenegro, J. Size and Polarizability of Boron Cluster Carriers Modulate Chaotropic Membrane Transport. Angewandte Chemie (International ed. in English) 2024, 63, e202404286. doi:10.1002/anie.202404286
  • Klußmann, M.; Stillger, K.; Ruppel, M.; Sticker, C.-L.; Neundorf, I. Investigating the impact of thiol reactivity and disulfide formation on cellular uptake of cell-permeable peptides. Journal of peptide science : an official publication of the European Peptide Society 2024, 30, e3604. doi:10.1002/psc.3604
  • Lee, H.-M.; Thai, T. D.; Lim, W.; Ren, J.; Na, D. Functional small peptides for enhanced protein delivery, solubility, and secretion in microbial biotechnology. Journal of biotechnology 2023, 375, 40–48. doi:10.1016/j.jbiotec.2023.08.008
  • Tavakoli, S.; Firoozpour, L.; Davoodi, J. The synergistic effect of chimeras consisting of N-terminal smac and modified KLA peptides in inducing apoptosis in breast cancer cell lines. Biochemical and biophysical research communications 2023, 655, 138–144. doi:10.1016/j.bbrc.2023.03.008
  • Oba, M.; Demizu, Y. doi:10.1002/9783527835997.ch1
  • Nakase, I. doi:10.1002/9783527835997.ch3
  • Hadjicharalambous, A.; Bournakas, N.; Newman, H.; Skynner, M. J.; Beswick, P. Antimicrobial and Cell-Penetrating Peptides: Understanding Penetration for the Design of Novel Conjugate Antibiotics. Antibiotics (Basel, Switzerland) 2022, 11, 1636. doi:10.3390/antibiotics11111636
  • Szabó, I.; Yousef, M.; Soltész, D.; Bató, C.; Mező, G.; Bánóczi, Z. Redesigning of Cell-Penetrating Peptides to Improve Their Efficacy as a Drug Delivery System. Pharmaceutics 2022, 14, 907. doi:10.3390/pharmaceutics14050907
  • Wang, T.; Tian, L.; Cheng, Q.; Feng, S.; Zhang, H.; Zheng, Z.; Liu, Y.; Cheng, M.; Meng, Z.; Meng, Q. Pep5-based antitumor peptides containing multifunctional fragments with enhanced activity and synergistic effect. European journal of medicinal chemistry 2022, 237, 114320. doi:10.1016/j.ejmech.2022.114320
  • Denardi, L. B.; Weiblen, C.; Ianiski, L. B.; Stibbe, P. C.; Pinto, S. C.; Santurio, J. M. Anti-Pythium insidiosum activity of MSI-78, LL-37, and magainin-2 antimicrobial peptides. Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology] 2022, 53, 509–512. doi:10.1007/s42770-022-00678-5
  • Price, J. S.; Emslie, D. J. Cyclic and Non-Cyclic Pi Complexes of Manganese. Comprehensive Organometallic Chemistry IV; Elsevier, 2022; pp 378–546. doi:10.1016/b978-0-12-820206-7.00077-9
  • Neundorf, I. Medical use of cell-penetrating peptides: how far have they come?. Peptide and Peptidomimetic Therapeutics; Elsevier, 2022; pp 235–254. doi:10.1016/b978-0-12-820141-1.00001-7
  • Nakase, I.; Takatani-Nakase, T. Exosomes: Breast cancer-derived extracellular vesicles; recent key findings and technologies in disease progression, diagnostics, and cancer targeting. Drug metabolism and pharmacokinetics 2021, 42, 100435. doi:10.1016/j.dmpk.2021.100435
  • Kumara, B. T.; Wijesiri, N. K.; Rathnayake, P. V. G. M.; Ranatunga, R. J. K. U. A Re-evaluation of the Free Energy Profiles for Cell-Penetrating Peptides Across DOPC Membranes. International Journal of Peptide Research and Therapeutics 2021, 27, 2931–2943. doi:10.1007/s10989-021-10301-0
  • Lichtenstein, M.; Zabit, S.; Hauser, N.; Farouz, S.; Melloul, O.; Hirbawi, J.; Lorberboum-Galski, H. TAT for Enzyme/Protein Delivery to Restore or Destroy Cell Activity in Human Diseases. Life (Basel, Switzerland) 2021, 11, 924. doi:10.3390/life11090924
  • Wester, A.; Hansen, A. M.; Hansen, P. R.; Franzyk, H. Perfluoro-tert-butanol for selective on-resin detritylation: a mild alternative to traditionally used methods. Amino acids 2021, 53, 1455–1466. doi:10.1007/s00726-021-03059-8
  • Rusiecka, I.; Gągało, I.; Kocić, I. Cell-penetrating peptides improve pharmacokinetics and pharmacodynamics of anticancer drugs. Tissue barriers 2021, 10, 1965418. doi:10.1080/21688370.2021.1965418
  • Noguchi, K.; Obuki, M.; Sumi, H.; Klußmann, M.; Morimoto, K.; Nakai, S.; Hashimoto, T.; Fujiwara, D.; Fujii, I.; Yuba, E.; Takatani-Nakase, T.; Neundorf, I.; Nakase, I. Macropinocytosis-Inducible Extracellular Vesicles Modified with Antimicrobial Protein CAP18-Derived Cell-Penetrating Peptides for Efficient Intracellular Delivery. Molecular pharmaceutics 2021, 18, 3290–3301. doi:10.1021/acs.molpharmaceut.1c00244
  • Streck, S.; Bohr, S. S.-R.; Birch, D.; Rades, T.; Hatzakis, N. S.; McDowell, A.; Nielsen, H. M. Interactions of Cell-Penetrating Peptide-Modified Nanoparticles with Cells Evaluated Using Single Particle Tracking. ACS applied bio materials 2021, 4, 3155–3165. doi:10.1021/acsabm.0c01563

Patents

  • FERREIRA MORAIS TÂNIA SOFIA; ANSELMO VIEGAS GARCIA MARIA HELENA; FRANCO MACHADO JOÃO MIGUEL. ORGANOMETALLIC COMPLEX, CONTROLLED-RELEASE MULTI-FUNCTIONAL DRUG, PHARMACEUTICAL COMPOSITION, PROCESSES FOR THE PREPARATION THEREOF AND THEIR USE. WO 2023199134 A1, Oct 19, 2023.
  • PARK TAI HYUN; LEE HAEIN; PARK YEONG KYU; RYU SOOHEE; KIM SEONG HOON; LEE HYEONG SEOK. CELL-PENETRATING PEPTIDE DIMERS, METHOD FOR PREPARING THE SAME, AND CARGO DELIVERY SYSTEM USING THE SAME. US 20230027819 A1, Jan 26, 2023.
  • LIPKIN GEORGE; ROSENBERG MARTIN. CYCLIC PEPTIDE DIMERS. US 20210395311 A1, Dec 23, 2021.
  • PARK TAI HYUN; LEE HAEIN; PARK YEONG KYU; RYU SOO HEE; KIM SEONG HOON; LEE HYEONG SEOK. CELL-PERMEABLE PEPTIDE DIMER, METHOD OF PREPARING SAME, AND CARGO DELIVERY SYSTEM USING SAME. WO 2021194257 A1, Sept 30, 2021.
  • TAI HYUN PARK; HAEIN LEE; YEONG KYU PARK; SOO HEE RYU; SEONG HOON KIM; HYEONG SEOK LEE. Cell-penetrating peptide dimers method for preparing the same and cargo delivery system using the same. KR 102195740 B1, Dec 28, 2020.
  • PELLOIS JEAN-PHILIPPE. Compositions and methods for the delivery of molecules into live cells. US 9662404 B2, May 30, 2017.
  • VANDEN HOEK TERRY; ZHU XIANGDONG; LI JING. PEPTIDES AND METHOD FOR TREATMENT OF CARDIAC ARREST. WO 2017079725 A1, May 11, 2017.
  • ユ ジェフン; イ ヨン; ヒョン スンシル; チャン サンモク. 細胞透過性αヘリックスペプチド多量体、これの製造方法およびその用途. JP 2016539922 A, Dec 22, 2016.
  • YU JAEHOON; LEE YAN; HYUN SOONSIL; JANG SANGMOK. ALPHA HELIX CELL-PENETRATING PEPTIDE MULTIMER, PREPARATION METHOD THEREFOR AND USE THEREOF. WO 2015057009 A1, April 23, 2015.
Other Beilstein-Institut Open Science Activities