Synthesis of szentiamide, a depsipeptide from entomopathogenic Xenorhabdus szentirmaii with activity against Plasmodium falciparum

Friederike I. Nollmann, Andrea Dowling, Marcel Kaiser, Klaus Deckmann, Sabine Grösch, Richard ffrench-Constant and Helge B. Bode
Beilstein J. Org. Chem. 2012, 8, 528–533. https://doi.org/10.3762/bjoc.8.60

Supporting Information

Supporting Information File 1: NMR-data of szentiamide (1).
Format: PDF Size: 223.7 KB Download

Cite the Following Article

Synthesis of szentiamide, a depsipeptide from entomopathogenic Xenorhabdus szentirmaii with activity against Plasmodium falciparum
Friederike I. Nollmann, Andrea Dowling, Marcel Kaiser, Klaus Deckmann, Sabine Grösch, Richard ffrench-Constant and Helge B. Bode
Beilstein J. Org. Chem. 2012, 8, 528–533. https://doi.org/10.3762/bjoc.8.60

How to Cite

Nollmann, F. I.; Dowling, A.; Kaiser, M.; Deckmann, K.; Grösch, S.; ffrench-Constant, R.; Bode, H. B. Beilstein J. Org. Chem. 2012, 8, 528–533. doi:10.3762/bjoc.8.60

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Lim, J. Y.; Yeong, K. Y. Nature-derived Peptides as Promising Antiparasitic Agents against Neglected Tropical Diseases. International Journal of Peptide Research and Therapeutics 2024, 30. doi:10.1007/s10989-024-10626-6
  • Sandhi, R. K.; Briar, S. S.; Reddy, G. V. P. Recent Advancements in the Use of Entomopathogens and Nematophagous Mites for the Management of Plant Parasitic Nematodes. Sustainability in Plant and Crop Protection; Springer International Publishing, 2024; pp 151–182. doi:10.1007/978-3-031-52557-5_6
  • Paquette, A. R.; Boddy, C. N. Macrocyclization strategies for the total synthesis of cyclic depsipeptides. Organic & biomolecular chemistry 2023, 21, 8043–8053. doi:10.1039/d3ob01229h
  • Zhang, Y.; Li, H.; Wang, F.; Liu, C.; Reddy, G. V. P.; Li, H.; Li, Z.; Sun, Y.; Zhao, Z. Discovery of a new highly pathogenic toxin involved in insect sepsis. Microbiology spectrum 2023, 11, e0142223. doi:10.1128/spectrum.01422-23
  • Fodor, A.; Hess, C.; Ganas, P.; Boros, Z.; Kiss, J.; Makrai, L.; Dublecz, K.; Pál, L.; Fodor, L.; Sebestyén, A.; Klein, M. G.; Tarasco, E.; Kulkarni, M. M.; McGwire, B. S.; Vellai, T.; Hess, M. Antimicrobial Peptides (AMP) in the Cell-Free Culture Media of Xenorhabdus budapestensis and X. szentirmaii Exert Anti-Protist Activity against Eukaryotic Vertebrate Pathogens including Histomonas meleagridis and Leishmania donovani Species. Antibiotics (Basel, Switzerland) 2023, 12, 1462. doi:10.3390/antibiotics12091462
  • Ishikawa, F.; Nakamura, S.; Nakanishi, I.; Tanabe, G. Recent progress in the reprogramming of nonribosomal peptide synthetases. Journal of peptide science : an official publication of the European Peptide Society 2023, 30, e3545. doi:10.1002/psc.3545
  • Rojas-Pirela, M.; Kemmerling, U.; Quiñones, W.; Michels, P. A. M.; Rojas, V. Antimicrobial Peptides (AMPs): Potential Therapeutic Strategy against Trypanosomiases?. Biomolecules 2023, 13, 599. doi:10.3390/biom13040599
  • Fodor, A.; Vellai, T.; Hess, C.; Makrai, L.; Dublecz, K.; Pál, L.; Molnár, A.; Klein, M. G.; Tarasco, E.; Józsa, S.; Ganas, P.; Hess, M. XENOFOOD-An Autoclaved Feed Supplement Containing Autoclavable Antimicrobial Peptides-Exerts Anticoccidial GI Activity, and Causes Bursa Enlargement, but Has No Detectable Harmful Effects in Broiler Cockerels despite In Vitro Detectable Cytotoxicity on LHM Cells. Pathogens (Basel, Switzerland) 2023, 12, 458. doi:10.3390/pathogens12030458
  • Muangpat, P.; Meesil, W.; Ngoenkam, J.; Teethaisong, Y.; Thummeepak, R.; Sitthisak, S.; Tandhavanant, S.; Chantratita, N.; Bode, H. B.; Vitta, A.; Thanwisai, A. Genome analysis of secondary metabolite‑biosynthetic gene clusters of Photorhabdus akhurstii subsp. akhurstii and its antibacterial activity against antibiotic-resistant bacteria. PloS one 2022, 17, e0274956. doi:10.1371/journal.pone.0274956
  • Abd-Elgawad, M. M. M. Xenorhabdus spp.: An Overview of the Useful Facets of Mutualistic Bacteria of Entomopathogenic Nematodes. Life (Basel, Switzerland) 2022, 12, 1360. doi:10.3390/life12091360
  • Motiwala, H. F.; Armaly, A. M.; Cacioppo, J. G.; Coombs, T. C.; Koehn, K. R. K.; Norwood, V. M.; Aubé, J. HFIP in Organic Synthesis. Chemical reviews 2022, 122, 12544–12747. doi:10.1021/acs.chemrev.1c00749
  • Abbood, N.; Duy Vo, T.; Watzel, J.; Bozhueyuek, K. A. J.; Bode, H. B. Type S Non-Ribosomal Peptide Synthetases for the Rapid Generation of Tailormade Peptide Libraries. Chemistry (Weinheim an der Bergstrasse, Germany) 2022, 28, e202103963. doi:10.1002/chem.202103963
  • Fodor, A.; Gualtieri, M.; Zeller, M.; Tarasco, E.; Klein, M. G.; Fodor, A. M.; Haynes, L.; Lengyel, K.; Forst, S. A.; Furgani, G. M.; Karaffa, L.; Vellai, T. Type Strains of Entomopathogenic Nematode-Symbiotic Bacterium Species, Xenorhabdus szentirmaii (EMC) and X. budapestensis (EMA), Are Exceptional Sources of Non-Ribosomal Templated, Large-Target-Spectral, Thermotolerant-Antimicrobial Peptides (by Both), and Iodinin (by EMC). Pathogens (Basel, Switzerland) 2022, 11, 342. doi:10.3390/pathogens11030342
  • Santos-Aberturas, J.; Vior, N. M. Beyond Soil-Dwelling Actinobacteria: Fantastic Antibiotics and Where to Find Them. Antibiotics (Basel, Switzerland) 2022, 11, 195. doi:10.3390/antibiotics11020195
  • Abbood, N.; Vo, T. D.; Watzel, J.; Bozhueyuek, K. A. J.; Bode, H. B. Type S Non Ribosomal Peptide Synthetases for the rapid generation of tailor-made peptide libraries. Cold Spring Harbor Laboratory 2021. doi:10.1101/2021.10.25.465728
  • De Mandal, S.; Panda, A. K.; Murugan, C.; Xu, X.; Kumar, N. S.; Jin, F. Antimicrobial Peptides: Novel Source and Biological Function With a Special Focus on Entomopathogenic Nematode/Bacterium Symbiotic Complex. Frontiers in microbiology 2021, 12, 555022. doi:10.3389/fmicb.2021.555022
  • Chacón-Orozco, J. G.; Bueno, C. J.; Shapiro-Ilan, D. I.; Hazir, S.; Leite, L. G.; Harakava, R. Antifungal activity of Xenorhabdus spp. and Photorhabdus spp. against the soybean pathogenic Sclerotinia sclerotiorum. Scientific reports 2020, 10, 20649. doi:10.1038/s41598-020-77472-6
  • Booysen, E.; Dicks, L. M. T. Does the Future of Antibiotics Lie in Secondary Metabolites Produced by Xenorhabdus spp.? A Review. Probiotics and antimicrobial proteins 2020, 12, 1310–1320. doi:10.1007/s12602-020-09688-x
  • Saraiva, R. G.; Dimopoulos, G. Bacterial natural products in the fight against mosquito-transmitted tropical diseases. Natural product reports 2020, 37, 338–354. doi:10.1039/c9np00042a
  • Zhao, L.; Vo, T. D.; Kaiser, M.; Bode, H. B. Phototemtide A, a Cyclic Lipopeptide Heterologously Expressed from Photorhabdus temperata Meg1, Shows Selective Antiprotozoal Activity. Chembiochem : a European journal of chemical biology 2020, 21, 1288–1292. doi:10.1002/cbic.201900665

Patents

  • ENSIGN JERALD COLEMAN; LAN QUE; DYER DAVID. Mosquitocidal xenorhabdus, lipopeptide and methods. US 10494407 B2, Dec 3, 2019.
Other Beilstein-Institut Open Science Activities