3D-printed devices for continuous-flow organic chemistry

Vincenza Dragone, Victor Sans, Mali H. Rosnes, Philip J. Kitson and Leroy Cronin
Beilstein J. Org. Chem. 2013, 9, 951–959. https://doi.org/10.3762/bjoc.9.109

Supporting Information

Supporting Information File 1: 3D printing materials and method, experimental and characterization of compounds.
Format: PDF Size: 1.3 MB Download

Cite the Following Article

3D-printed devices for continuous-flow organic chemistry
Vincenza Dragone, Victor Sans, Mali H. Rosnes, Philip J. Kitson and Leroy Cronin
Beilstein J. Org. Chem. 2013, 9, 951–959. https://doi.org/10.3762/bjoc.9.109

How to Cite

Dragone, V.; Sans, V.; Rosnes, M. H.; Kitson, P. J.; Cronin, L. Beilstein J. Org. Chem. 2013, 9, 951–959. doi:10.3762/bjoc.9.109

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • du Preez, A.; Strydom, A. M.; Ndinteh, D. T.; Smit, E. Modular 3D printed flow system for efficient one-step synthesis of phenyl-functionalised silica-coated superparamagnetic iron oxide nanoparticles. Reaction Chemistry & Engineering 2024, 9, 2740–2749. doi:10.1039/d4re00242c
  • Spano, M. B.; Pamidi, A. S.; Liu, M. H.; Evans, A. C.; Weiss, G. A. Optimizing Continuous‐Flow Biocatalysis with 3D‐Printing and Inline IR Monitoring. ChemCatChem 2024. doi:10.1002/cctc.202400498
  • Montaner, M. B.; Hilton, S. T. Recent advances in 3D printing for continuous flow chemistry. Current Opinion in Green and Sustainable Chemistry 2024, 47, 100923. doi:10.1016/j.cogsc.2024.100923
  • Gnädinger, U.; Poier, D.; Trombini, C.; Dabros, M.; Marti, R. Development of Lab-Scale Continuous Stirred-Tank Reactor as Flow Process Tool for Oxidation Reactions Using Molecular Oxygen. Organic process research & development 2024, 28, 1860–1868. doi:10.1021/acs.oprd.3c00424
  • Montaner, M. B.; Penny, M. R.; Hilton, S. T. Digitisation of a modular plug and play 3D printed continuous flow system for chemical synthesis. Digital Discovery 2023, 2, 1797–1805. doi:10.1039/d3dd00128h
  • Ncongwane, T. B.; Ndinteh, D. T.; Smit, E. Automated silylation of flavonoids using 3D printed microfluidics prior to chromatographic analysis: system development. Analytical and bioanalytical chemistry 2023, 415, 7151–7160. doi:10.1007/s00216-023-04981-4
  • Aguirre-Cortés, J. M.; Moral-Rodríguez, A. I.; Bailón-García, E.; Davó-Quiñonero, A.; Pérez-Cadenas, A. F.; Carrasco-Marín, F. 3D printing in photocatalysis: Methods and capabilities for the improved performance. Applied Materials Today 2023, 32, 101831. doi:10.1016/j.apmt.2023.101831
  • Rufato, K. B.; Veregue, F. R.; de Paula Medeiro, R.; Francisco, C. B.; Souza, P. R.; Popat, K. C.; Kipper, M. J.; Martins, A. F. Electrospinning of poly(vinyl alcohol) and poly(vinyl alcohol)/tannin solutions: A critical viewpoint about crosslinking. Materials Today Communications 2023, 35, 106271. doi:10.1016/j.mtcomm.2023.106271
  • Penny, M. R.; Rao, Z. X.; Thavarajah, R.; Ishaq, A.; Bowles, B. J.; Hilton, S. T. 3D printed tetrakis(triphenylphosphine)palladium (0) impregnated stirrer devices for Suzuki–Miyaura cross-coupling reactions. Reaction Chemistry & Engineering 2023, 8, 752–757. doi:10.1039/d2re00218c
  • Nakahara, K.; T.sriwong, K.; Hawari, M. A.; Tanaka, A.; Matsuda, T. Enzyme immobilization on a 3D-printed reactor for aldehyde oxidation to carboxylic acid under mild conditions. Reaction Chemistry & Engineering 2023, 8, 543–547. doi:10.1039/d2re00547f
  • Mateti, T.; Jain, S.; Ananda Shruthi, L.; Laha, A.; Thakur, G. An overview of the advances in the 3D printing technology. 3D Printing Technology for Water Treatment Applications; Elsevier, 2023; pp 1–37. doi:10.1016/b978-0-323-99861-1.00002-3
  • Palmara, G.; Carvajal, D.; Zanatta, M.; Mas-Marza, E.; Sans, V. Additive manufacturing technologies applied to the electrochemical valorization of biomass. Current Research in Green and Sustainable Chemistry 2023, 7, 100386. doi:10.1016/j.crgsc.2023.100386
  • Kingman, J.; Dymond, M. K. Fused filament fabrication and water contact angle anisotropy: The effect of layer height and raster width on the wettability of 3D printed polylactic acid parts. Chemical Data Collections 2022, 40, 100884. doi:10.1016/j.cdc.2022.100884
  • Saggiomo, V. A 3D Printer in the Lab: Not Only a Toy. Advanced science (Weinheim, Baden-Wurttemberg, Germany) 2022, 9, e2202610. doi:10.1002/advs.202202610
  • Resul, M. F. M. G.; Rehman, A.; Fernández, A. M. L.; Eze, V. C.; Harvey, A. P. Continuous process for the epoxidation of terpenes using mesoscale oscillatory baffled reactors. Chemical Engineering and Processing - Process Intensification 2022, 177, 108998. doi:10.1016/j.cep.2022.108998
  • Fagundes, A. P.; Lira, J. O. d. B.; Padoin, N.; Soares, C.; Riella, H. G. Additive manufacturing of functional devices for environmental applications: A review. Journal of Environmental Chemical Engineering 2022, 10, 108049. doi:10.1016/j.jece.2022.108049
  • Ng, S. S. Y.; Walker, D. M.; Hawkins, J. M.; Khan, S. A. 3D-printed capillary force trap reactors (CFTRs) for multiphase catalytic flow chemistry. Reaction Chemistry & Engineering 2022, 7, 1297–1306. doi:10.1039/d1re00462j
  • T.sriwong, K.; Matsuda, T. Facile mussel-inspired polydopamine-coated 3D-printed bioreactors for continuous flow biocatalysis. Reaction Chemistry & Engineering 2022, 7, 1053–1060. doi:10.1039/d2re00040g
  • Zentel, K. M.; Reinbeck, A.; Deckert, C.; Pauer, W.; Luinstra, G. A. Combining Functional Prototyping of 3D Printed Reactors with a Modular Reactor Setup for Continuous Emulsion Polymerization. Chemie Ingenieur Technik 2022, 94, 1105–1116. doi:10.1002/cite.202200005
  • Valverde, D.; Porcar, R.; Zanatta, M.; Alcalde, S.; Altava, B.; Sans, V.; García-Verdugo, E. Towards highly efficient continuous-flow catalytic carbon dioxide cycloadditions with additively manufactured reactors. Green Chemistry 2022, 24, 3300–3308. doi:10.1039/d1gc04593h

Patents

  • GONÇALVES FERREIRA DANIEL ANDRÉ; ERTL PETER; GONÇALVES DE OLIVEIRA CARLA ISABEL; LOPES GRANJA PEDRO. FABRICATION OF MICROACTUATOR AND IN-LINE DEGASSER IN ORGAN-ONA_CHIP DEVICES AND METHODS THEREOF. WO 2022035335 A1, Feb 17, 2022.
  • JONES ANDREW. Sequential oxidation-reduction reactor for post column reaction GC/FID system. US 10859543 B2, Dec 8, 2020.
  • CRONIN LEROY. DIGITAL REACTIONWARE. WO 2019137954 A1, July 18, 2019.
  • JONES ANDREW. Sequential oxidation-reduction reactor for post column reaction GC/FID system. US 10222356 B2, March 5, 2019.
  • JONES ANDREW. SEQUENTIAL OXIDATION-REDUCTION REACTOR FOR POST COLUMN REACTION GC/FID SYSTEM. WO 2016154011 A1, Sept 29, 2016.
Other Beilstein-Institut Open Science Activities