Cite the Following Article
Synthesis and spectroscopic properties of 4-amino-1,8-naphthalimide derivatives involving the carboxylic group: a new molecular probe for ZnO nanoparticles with unusual fluorescence features
Laura Bekere, David Gachet, Vladimir Lokshin, Wladimir Marine and Vladimir Khodorkovsky
Beilstein J. Org. Chem. 2013, 9, 1311–1318.
https://doi.org/10.3762/bjoc.9.147
How to Cite
Bekere, L.; Gachet, D.; Lokshin, V.; Marine, W.; Khodorkovsky, V. Beilstein J. Org. Chem. 2013, 9, 1311–1318. doi:10.3762/bjoc.9.147
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Bala, I.-A.; Nicolescu, A.; Georgescu, F.; Dumitrascu, F.; Airinei, A.; Tigoianu, R.; Georgescu, E.; Constantinescu-Aruxandei, D.; Oancea, F.; Deleanu, C. Synthesis and Biological Properties of Fluorescent Strigolactone Mimics Derived from 1,8-Naphthalimide. Molecules (Basel, Switzerland) 2024, 29, 2283. doi:10.3390/molecules29102283
- Sendh, J.; Baruah, J. B. Naphthalimide decorated copper(II), cobalt(II) dicarboxylates and tricking turn-ON emission. Polyhedron 2024, 249, 116792. doi:10.1016/j.poly.2023.116792
- Luo, X.; Jin, Q.; Du, M.; Wang, D.; Duan, L.; Zhang, Y. An Ideal Molecular Construction Strategy for Ultra-Narrow-Band Deep-Blue Emitters: Balancing Bathochromic-Shift Emission, Spectral Narrowing, and Aggregation Suppression. Advanced science (Weinheim, Baden-Wurttemberg, Germany) 2023, 11, e2307675. doi:10.1002/advs.202307675
- Wang, C.; Zhang, X. Formaldehyde in biological systems: Involving sources, related diseases and reaction-based fluorescent detection. TrAC Trends in Analytical Chemistry 2023, 168, 117298. doi:10.1016/j.trac.2023.117298
- Han, C.; Sun, S.-B.; Ji, X.; Wang, J.-Y. Recent advances in 1,8-naphthalimide-based responsive small-molecule fluorescent probes with a modified C4 position for the detection of biomolecules. TrAC Trends in Analytical Chemistry 2023, 167, 117242. doi:10.1016/j.trac.2023.117242
- Irshad, R.; Asim, S.; Mansha, A.; Arooj, Y. Naphthalene and its Derivatives: Efficient Fluorescence Probes for Detecting and Imaging Purposes. Journal of fluorescence 2023, 33, 1273–1303. doi:10.1007/s10895-023-03153-y
- Tigoianu, R.; Airinei, A.; Georgescu, E.; Nicolescu, A.; Georgescu, F.; Isac, D. L.; Deleanu, C.; Oancea, F. Synthesis and Solvent Dependent Fluorescence of Some Piperidine-Substituted Naphthalimide Derivatives and Consequences for Water Sensing. International journal of molecular sciences 2022, 23, 2760. doi:10.3390/ijms23052760
- Thakur, R.; Singh, I.; Paul, K. Ruthenium(II)‐Catalyzed C−H Alkenylation of 1,8‐Naphthalimide with Cyclic Imide as a Weakly Coordinating Directing Group. Asian Journal of Organic Chemistry 2022, 11. doi:10.1002/ajoc.202100798
- Kagatikar, S.; Sunil, D. A systematic review on 1,8-naphthalimide derivatives as emissive materials in organic light-emitting diodes. Journal of Materials Science 2022, 57, 105–139. doi:10.1007/s10853-021-06602-w
- Zamani, E.; Yahyaei, H.; Zamani, M. Evaluation of the mechanical properties and blood compatibility of Polycarbonate Urethane and fluorescent self-colored Polycarbonate Urethane as Polymeric Biomaterials. Journal of Polymer Research 2021, 28, 1–11. doi:10.1007/s10965-021-02478-1
- Dong, H.-Q.; Wei, T.-B.; Ma, X.-Q.; Yang, Q.-Y.; Zhang, Y.-F.; Sun, Y.-J.; Shi, B.; Yao, H.; Zhang, Y.-M.; Lin, Q. 1,8-Naphthalimide-based fluorescent chemosensors: recent advances and perspectives. Journal of Materials Chemistry C 2020, 8, 13501–13529. doi:10.1039/d0tc03681a
- Xia, K.; Cao, R.; Gao, Y.; Li, Y.; Ni, Y.; Wang, S.; Geng, N.; Song, B.; Ren, Y.; Zhang, Y.; Chen, J.; Zhang, H. Mass balance and elimination mechanism of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) during the kraft pulping process. Journal of hazardous materials 2020, 398, 122819. doi:10.1016/j.jhazmat.2020.122819
- Nicolescu, A.; Airinei, A.; Georgescu, E.; Georgescu, F.; Tigoianu, R.; Oancea, F.; Deleanu, C. Synthesis, photophysical properties and solvatochromic analysis of some naphthalene-1,8-dicarboxylic acid derivatives. Journal of Molecular Liquids 2020, 303, 112626. doi:10.1016/j.molliq.2020.112626
- Coban, F.; Ayranci, R.; Ak, M. Synthesis and electropolymerization of a multifunctional naphthalimide clicked carbazole derivative. Polymer International 2019, 69, 265–273. doi:10.1002/pi.5942
- Mohr, G. J. Synthesis of naphthalimide-based indicator dyes with a 2-hydroxyethylsulfonyl function for covalent immobilisation to cellulose. Sensors and Actuators B: Chemical 2018, 275, 439–445. doi:10.1016/j.snb.2018.07.095
- Zhou, Y.; Zhu, L. Involving Synergy of Green Light and Acidic Responses in Control of Unimolecular Multicolor Luminescence. Chemistry (Weinheim an der Bergstrasse, Germany) 2018, 24, 10306–10309. doi:10.1002/chem.201801731
- Hearn, K. N.; Nalder, T. D.; Cox, R. P.; Maynard, H. D.; Bell, T. D. M.; Pfeffer, F. M.; Ashton, T. D. Modular synthesis of 4-aminocarbonyl substituted 1,8-naphthalimides and application in single molecule fluorescence detection. Chemical communications (Cambridge, England) 2017, 53, 12298–12301. doi:10.1039/c7cc07922b
- Shen, S.-L.; Ning, J.-Y.; Zhang, X.-F.; Miao, J.-Y.; Zhao, B.-X. Through-bond energy transfer-based ratiometric fluorescent probe for the imaging of HOCl in living cells. Sensors and Actuators B: Chemical 2017, 244, 907–913. doi:10.1016/j.snb.2017.01.073
- Pulido-Reyes, G.; Martin, E.; Coronado, J. L. G.; Leganés, F.; Rosal, R.; Fernández-Piñas, F. Physicochemical and biological interactions between cerium oxide nanoparticles and a 1,8-naphthalimide derivative. Journal of photochemistry and photobiology. B, Biology 2017, 172, 61–69. doi:10.1016/j.jphotobiol.2017.05.009
- Fleming, C. L.; Nalder, T. D.; Doeven, E. H.; Barrow, C. J.; Pfeffer, F. M.; Ashton, T. D. Synthesis of N-substituted 4-hydroxynaphthalimides using palladium-catalysed hydroxylation. Dyes and Pigments 2016, 126, 118–120. doi:10.1016/j.dyepig.2015.11.007