The β-cyclodextrin/benzene complex and its hydrogen bonds – a theoretical study using molecular dynamics, quantum mechanics and COSMO-RS

Jutta Erika Helga Köhler and Nicole Grczelschak-Mick
Beilstein J. Org. Chem. 2013, 9, 118–134. https://doi.org/10.3762/bjoc.9.15

Cite the Following Article

The β-cyclodextrin/benzene complex and its hydrogen bonds – a theoretical study using molecular dynamics, quantum mechanics and COSMO-RS
Jutta Erika Helga Köhler and Nicole Grczelschak-Mick
Beilstein J. Org. Chem. 2013, 9, 118–134. https://doi.org/10.3762/bjoc.9.15

How to Cite

Köhler, J. E. H.; Grczelschak-Mick, N. Beilstein J. Org. Chem. 2013, 9, 118–134. doi:10.3762/bjoc.9.15

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Pereva, S.; Dobrev, S.; Sarafska, T.; Nikolova, V.; Angelova, S.; Spassov, T.; Dudev, T. Deciphering the mechanism of γ-cyclodextrin's hydrophobic cavity hydration: an integrated experimental and theoretical study. Beilstein journal of organic chemistry 2024, 20, 2635–2643. doi:10.3762/bjoc.20.221
  • Cantero-López, P.; Sánchez, J.; Páez Meza, M. S.; García-Negrete, C.; Bustos, D.; Yáñez, O. Nature of host–guest interaction of cyclic alcohols in β-Cyclodextrin: A molecular view of its structural features. Chemical Physics 2024, 588, 112483. doi:10.1016/j.chemphys.2024.112483
  • Ouyang, J.; Zhang, Z.; Li, J.; Wu, C. Integrating Enzymes with Supramolecular Polymers for Recyclable Photobiocatalytic Catalysis. Angewandte Chemie 2024, 136. doi:10.1002/ange.202400105
  • Ouyang, J.; Zhang, Z.; Li, J.; Wu, C. Integrating Enzymes with Supramolecular Polymers for Recyclable Photobiocatalytic Catalysis. Angewandte Chemie (International ed. in English) 2024, 63, e202400105. doi:10.1002/anie.202400105
  • Cantero-López, P.; Sánchez, J.; Páez Meza, M. S.; García-Negrete, C. A.; Bustos, D.; Yañez, O. Nature of Host–Guest Interaction of Cyclic Alcohols in Β-Cyclodextrin: A Molecular View of its Structural Features. Elsevier BV 2024. doi:10.2139/ssrn.4835541
  • Fateminasab, F.; Bordbar, A.; Asadi, B.; Shityakov, S.; Zare Karizak, A.; Mohammadpoor-Baltork, I.; Saboury, A. Modified β-cyclodextrins: Rosmarinic acid inclusion complexes as functional food ingredients show improved operations (solubility, stability and antioxidant activity). Food Hydrocolloids 2022, 131, 107731. doi:10.1016/j.foodhyd.2022.107731
  • Rahali, S.; Belhocine, Y.; Allal, H.; Bouhadiba, A.; Assaba, I. M.; Seydou, M. A DFT investigation of the host–guest interactions between boron-based aromatic systems and β-cyclodextrin. Structural Chemistry 2021, 33, 195–206. doi:10.1007/s11224-021-01835-6
  • Dumouilla, V.; Dussap, C.-G. Online analysis of D-glucose and D-mannose aqueous mixtures using Raman spectroscopy: an in silico and experimental approach. Bioengineered 2021, 12, 4420–4431. doi:10.1080/21655979.2021.1955550
  • Rahali, S.; Belhocine, Y.; Allal, H.; Bouhadiba, A.; Assaba, I. M.; Seydou, M. A DFT investigation of the host–guest interactions between boron-based aromatic systems and β-cyclodextrin. 2021, 1–12. doi:10.21203/rs.3.rs-488597/v1
  • Mei, C.; Li, Y.-H.; Yonggen, L.; Xueling, L.; Shuyue, Z.; Yang, L.-J.; Xingyuan, L.; Zhang, J.-Q. Molecular dynamics simulations and theoretical calculations of cyclodextrin-polydatin inclusion complexes. Journal of Molecular Structure 2021, 1230, 129840. doi:10.1016/j.molstruc.2020.129840
  • Imtiaz, S.; Banoo, S.; Muzaffar, S.; Ali, S. M. Structural determination of midazolam/beta-cyclodextrin inclusion complex by an already proposed protocol and molecular docking studies by quantitative analysis. Structural Chemistry 2021, 32, 1505–1516. doi:10.1007/s11224-021-01727-9
  • Imtiaz, S.; Banoo, S.; Muzaffar, S.; Ali, S. M. Structural determination of midazolam/beta-cyclodextrin inclusion complex by an already proposed protocol and molecular docking studies by quantitative analysis. Structural Chemistry 2021, 32, 1–12.
  • Lou, C.; Yin, Y.; Tian, X.; Deng, H.; Wang, Y.; Jiang, X. Modification of Wool via Grafting β-cyclodextrin Oxidized by Sodium Periodate. Fibers and Polymers 2020, 21, 1669–1677. doi:10.1007/s12221-020-9983-8
  • Fateminasab, F.; Bordbar, A.-K.; Shityakov, S.; Saboury, A. A. Molecular insights into inclusion complex formation between β- and γ-cyclodextrins and rosmarinic acid. Journal of Molecular Liquids 2020, 314, 113802. doi:10.1016/j.molliq.2020.113802
  • Fateminasab, F.; Bordbar, A.-K.; Shityakov, S.; Saboury, A. A. Comprehensive Physico-Chemical Characterization of a Serotonin Inclusion Complex with 2-Hydroxypropyl-β-Cyclodextrin. Journal of Solution Chemistry 2020, 49, 915–944. doi:10.1007/s10953-020-00997-x
  • Fateminasab, F.; Bordbar, A.-K.; Shityakov, S. Detailed chemical characterization and molecular modeling of serotonin inclusion complex with unmodified β-cyclodextrin. Heliyon 2019, 5, e01405. doi:10.1016/j.heliyon.2019.e01405
  • Fateminasab, F.; Bordbar, A.-K.; Shityakov, S.; Gholami, S. Diadzein complexation with unmodified cyclodextrins: A detailed experimental and theoretical study. Journal of Molecular Liquids 2018, 271, 80–95. doi:10.1016/j.molliq.2018.08.124
  • Tang, Z.; Chang, C.-e. A. Binding Thermodynamics and Kinetics Calculations Using Chemical Host and Guest: A Comprehensive Picture of Molecular Recognition. Journal of chemical theory and computation 2017, 14, 303–318. doi:10.1021/acs.jctc.7b00899
  • Gangadharappa, H.; Prasad, S. M. C.; Singh, R. P. Formulation, in vitro and in vivo evaluation of celecoxib nanosponge hydrogels for topical application. Journal of Drug Delivery Science and Technology 2017, 41, 488–501. doi:10.1016/j.jddst.2017.09.004
  • Setthayanond, J.; Sodsangchan, C.; Suwanruji, P.; Tooptompong, P.; Avinc, O. Influence of MCT-β-cyclodextrin treatment on strength, reactive dyeing and third-hand cigarette smoke odor release properties of cotton fabric. Cellulose 2017, 24, 5233–5250. doi:10.1007/s10570-017-1467-7
Other Beilstein-Institut Open Science Activities