A3-Coupling catalyzed by robust Au nanoparticles covalently bonded to HS-functionalized cellulose nanocrystalline films

Jian-Lin Huang, Derek G. Gray and Chao-Jun Li
Beilstein J. Org. Chem. 2013, 9, 1388–1396. https://doi.org/10.3762/bjoc.9.155

Supporting Information

Detailed experimental procedures for the synthesis of CNCs and Au@HS-CNCs using a modified procedure reported by Tingaut et al. and the HRTEM images of the Au@HS-CNC (4.4 mol%) catalysts. TEM images of the (A) Au@HS-CNC (2.9 mol %), (B) Au@HS-CNC (5.2 mol %) and (C) Au@HS-CNC (6.3 mol %) catalysts and the analysis procedure of the product.

Supporting Information File 1: File Format PDF.
Experimental procedures, HRTEM images and analysis procedure.
Format: PDF Size: 684.6 KB Download

Cite the Following Article

A3-Coupling catalyzed by robust Au nanoparticles covalently bonded to HS-functionalized cellulose nanocrystalline films
Jian-Lin Huang, Derek G. Gray and Chao-Jun Li
Beilstein J. Org. Chem. 2013, 9, 1388–1396. https://doi.org/10.3762/bjoc.9.155

How to Cite

Huang, J.-L.; Gray, D. G.; Li, C.-J. Beilstein J. Org. Chem. 2013, 9, 1388–1396. doi:10.3762/bjoc.9.155

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Kareem, F.; Chandrawati, R.; Ahmed, M. U. Tailoring nanocellulose: A comprehensive exploration of functionalisation with small, macro, and inorganic molecules for enhanced sensing and dual-mode biosensing. Measurement 2024, 239, 115499. doi:10.1016/j.measurement.2024.115499
  • Gayatri, T.; Nageshwari, B.; Kesiraju, S.; Merugu, R. Bacterial biopolymers: current status and future prospects. Microbial Essentialism; Elsevier, 2024; pp 125–144. doi:10.1016/b978-0-443-13932-1.00024-6
  • Fan, Y.-j.; Wang, D.; Wang, L.; Zhou, Y. Synthesis of propargylamines catalyzed by in situ generated copper nanoparticles in water. Mendeleev Communications 2023, 33, 829–831. doi:10.1016/j.mencom.2023.10.030
  • Wang, H.; Shi, D.; Meng, Y.; Hai, M.; Shu, Y.; Liu, B.; Duan, Z. Synthesis of Propargylamine and Indolazine Derivatives via Three‐Component Reaction Catalyzed by CuOx/CeO2 Materials. ChemistrySelect 2023, 8. doi:10.1002/slct.202300472
  • Gondaliya, B. L.; Kapadiya, K. M. HAuCl4 Catalyzed and Dibenzyl amine Centered A3 coupling reaction: Synthesis, Spectroscopic Proofing and Anti‐microbial Efficacy. ChemistrySelect 2023, 8. doi:10.1002/slct.202302047
  • Mohammadi, L.; Taghavi, R.; Hosseinifard, M.; Vaezi, M. R.; Rostamnia, S. Gold nanoparticle decorated post-synthesis modified UiO-66-NH2 for A3-coupling preparation of propargyl amines. Scientific reports 2023, 13, 9051. doi:10.1038/s41598-023-35848-4
  • Rubiya, M. H.; Melethil, K.; James, A.; Varghese, S.; Thomas, B. Cellulose Nanocrystals (CNCs) Supported Inorganic Nanomaterials for Catalytic Applications. Handbook of Biopolymers; Springer Nature Singapore, 2023; pp 907–939. doi:10.1007/978-981-19-0710-4_34
  • Berrichi, A.; Bachir, R.; Bedrane, S. Catalysts For Propargylamines Synthesis Via A3, AHA, and KA2 Coupling - A Review. Current Organic Chemistry 2023, 27, 621–643. doi:10.2174/1385272827666230614151935
  • Zhang, C.; Yu, S.; Wang, F.; Cao, J.; Liang, X.; Wang, F.; Zheng, H.; Zhang, Y.; Yang, M.; Zhao, B. Insights into the Three-Component Coupling Reactions of Aldehydes, Alkynes, and Amines Catalyzed by N-heterocyclic Carbene Silver: A DFT Study. Catalysts 2023, 13, 646. doi:10.3390/catal13040646
  • Rubiyah, M. H.; Melethil, K.; James, A.; Varghese, S.; Thomas, B. Cellulose Nanocrystals (CNCs) Supported Inorganic Nanomaterials for Catalytic Applications. Handbook of Biopolymers; Springer Nature Singapore, 2022; pp 1–33. doi:10.1007/978-981-16-6603-2_34-1
  • Zarenezhad, E.; Taghavi, R.; Kamrani, P.; Farjam, M.; Rostamnia, S. Gold nanoparticle decorated dithiocarbamate modified natural boehmite as a catalyst for the synthesis of biologically essential propargylamines. RSC advances 2022, 12, 31680–31687. doi:10.1039/d2ra03725d
  • Javanbakht, S.; Nasiriani, T.; Farhid, H.; Nazeri, M. T.; Shaabani, A. Sustainable functionalization and modification of materials via multicomponent reactions in water. Frontiers of Chemical Science and Engineering 2022, 16, 1318–1344. doi:10.1007/s11705-022-2150-6
  • Anžlovar, A.; Žagar, E. Cellulose Structures as a Support or Template for Inorganic Nanostructures and Their Assemblies. Nanomaterials (Basel, Switzerland) 2022, 12, 1837. doi:10.3390/nano12111837
  • Kiani, A.; Alinezhad, H.; Ghasemi, S. Preparation Immobilized Cu Nanoparticles on Modified Metal-Organic Framework via Linker Design as an Effective and Highly Efficient Nanocatalyst for the Synthesis of Propargyl Amines Derivatives. Polycyclic Aromatic Compounds 2022, 43, 2920–2937. doi:10.1080/10406638.2022.2056623
  • Kardan, M.; Gholinejad, M.; Saadati, F.; Nayeri, S.; Mirmohammad, S. S.; Sansano, J. M. DABCO-based ionic liquid-modified magnetic nanoparticles supported gold as an efficient catalyst for A3 coupling reaction in water. Journal of the Iranian Chemical Society 2022, 19, 3417–3430. doi:10.1007/s13738-022-02534-7
  • Peiman, S.; Baharfar, R.; Hosseinzadeh, R. CuI NPs immobilized on a ternary hybrid system of magnetic nanosilica, PAMAM dendrimer and trypsin, as an efficient catalyst for A3‑coupling reaction. Research on Chemical Intermediates 2022, 48, 1365–1382. doi:10.1007/s11164-021-04654-w
  • Kamalzare, M. Natural-based micro and nanoscale composites. Heterogeneous Micro and Nanoscale Composites for the Catalysis of Organic Reactions; Elsevier, 2022; pp 167–182. doi:10.1016/b978-0-12-824527-9.00011-3
  • Candan, Z.; Tozluoglu, A.; Gonultas, O.; Yildirim, M.; Fidan, H.; Alma, M. H.; Salan, T. Nanocellulose: Sustainable biomaterial for developing novel adhesives and composites. Industrial Applications of Nanocellulose and Its Nanocomposites; Elsevier, 2022; pp 49–137. doi:10.1016/b978-0-323-89909-3.00015-8
  • Yazdani, H.; Hooshmand, S. E.; Varma, R. S. Gold Nanoparticle-Catalyzed Multicomponent Reactions. ACS Sustainable Chemistry & Engineering 2021, 9, 16556–16569. doi:10.1021/acssuschemeng.1c04361
  • Yu, J.; Wang, A. C.; Zhang, M.; Lin, Z. Water treatment via non-membrane inorganic nanoparticles/cellulose composites. Materials Today 2021, 50, 329–357. doi:10.1016/j.mattod.2021.03.024

Patents

  • BRAJE WILFRIED; BRITZE KATARINA; DIETRICH JUSTIN D; JOLIT ANAIS; KASCHEL JOHANNES; KLEE JOHANNA; LINDNER TANJA. Organic reactions carried out in aqueous solution in the presence of a hydroxyalkyl(alkyl)cellulose or an alkylcellulose. US 11312668 B2, April 26, 2022.
  • BRAJE WILFRIED; BRITZE KATARINA; DIETRICH JUSTIN D; JOLIT ANAIS; KASCHEL JOHANNES; KLEE JOHANNA; LINDNER TANJA. Organic reactions carried out in aqueous solution in the presence of a hydroxyalkyl(alkyl)cellulose or an alkylcellulose. US 10836688 B2, Nov 17, 2020.
  • BRAJE WILFRIED; BRITZE KATARINA; DIETRICH JUSTIN D; JOLIT ANAIS; KASCHEL JOHANNES; KLEE JOHANNA; LINDNER TANJA. ORGANIC REACTIONS CARRIED OUT IN AQUEOUS SOLUTION IN THE PRESENCE OF A HYDROXYALKYL(ALKYL)CELLULOSE OR AN ALKYLCELLULOSE. WO 2017129796 A1, Aug 3, 2017.
  • BOUTRY DELPHINE; AUGER AURELIEN; GUIOT ARNAUD. PROCEDE DE MARQUAGE D’UNE NANOCELLULOSE. FR 3041353 A1, March 24, 2017.
  • BOUTRY DELPHINE; AUGER AURÉLIEN; GUIOT ARNAUD. METHOD FOR TAGGING NANOCELLULOSE. WO 2017046347 A1, March 23, 2017.
Other Beilstein-Institut Open Science Activities