Abstract
Cu-catalyzed A3 coupling of ethoxyacetylene, pyrrolidine and salicylaldehydes led to a concomitant cycloisomerization followed by hydrolysis of the resultant vinyl ether to afford coumarins in a cascade process. The reaction proceeded through exclusive 6-endo-dig cyclization and is compatible with halo and keto groups giving coumarins in good to moderate yields.
Introduction
An alkyne, an aldehyde and an amine coupling, referred to as A3 coupling [1], has been found as an efficient method for C–N and C–C bond formation that results in equivalence of reductive alkylation of amines while at the same time appending an alkyne, i.e., a highly useful moiety for further functionlization. This three-component coupling has been accomplished with a very broad range of transition metals, including copper, silver, gold, ruthenium/copper, cobalt, iridium and iron. Similarly, cycloisomerization of alkynols and alkynamines has also been an attractive approach for the synthesis of various known and new heterocyclic frameworks [2-22]. Various alkynophilic catalysts such as transition-metal catalysts (based on gold, mercury, platinum, silver, etc.), Brønsted acids and electrophilic iodine sources (I2, ICl, NIS) have been used for the transformation.
If one of the partners in A3 coupling has any nucleophile for concomitant electrophilic cyclization on the alkyne group in the A3 product, this may result in an interesting reaction sequence to produce various heterocycles. Recently, Gevorgyan and co-workers [23] used these two processes (A3/5-exo-dig cycloisomerization) in tandem to obtain indolines, which were then converted to useful substituted indole derivatives (Scheme 1, (a)). Similarly, Patil and Raut [24] reported an elegant method for the synthesis of 2-substituted quinolines from 2-aminobenzaldehydes and terminal alkynes by a tandem A3/6-endo-dig-cycloisomerization (Scheme 1, (b)) using a cooperative catalytic system consisting of CuI and pyrrolidine. Prior to these two findings, Sakai et al. [25] reported a facile synthesis of 3-aminobenzofurans through an A3 coupling and an exclusive 5-exo-dig-cycloisomerization (Scheme 1, (c)). Similarly, Yan and Liu [26], Fujii et al. [27,28], Chernyk and Gevorgyan [29], Ji et al. [30], and Wu et al. [31] reported the synthesis of aminoindolizines, 2-(aminomethyl)indoles, imidazopyridines, butenolides and 1,2-dihydroisoquinoline derivatives, respectively, combining these two approaches successfully. Along the same lines, we investigated a reaction between ethoxyacetylene, pyrrolidine and salicylaldehyde in the presence of a transition-metal catalyst. That, after consecutive A3 coupling, cycloisomerization and hydrolysis of the resultant vinyl ether intermediate, should produce coumarins (Scheme 1, (d)). The reason for the selective 6-endo-dig cyclization of such a cooperative-catalysis reaction has been well documented through DFT computational studies by Patil et al. in their recent publication [32].
Results and Discussion
Coumarins [33-46] have been attractive targets [47-53] for synthetic chemists due to their frequent occurrence in nature and for their interesting biological and pharmaceutical applications. In continuation of our interest in the cycloisomerization of alkynols and alkynamines for the synthesis of various heterocycles [17-22], we herein report the synthesis of coumarins from salicylaldehydes by a Cu-catalyzed exclusive 6-endo-dig electrophilic cyclization of the intermediate hydroxyphenylpropargylamine as shown in Scheme 1 (d). We initially investigated the reaction with various Cu-, Au- and Pd-based catalysts in the presence of pyrrolidine in MeCN at room temperature (Table 1).
Table 1: Catalyst and condition screening.
entry | catalyst | solvent/temp | base | Time (h) | yield (%) |
---|---|---|---|---|---|
1 | CuI | CH3CN/rt | pyrrolidine | 24 | 58 |
2 | Cu(OTf)2 | CH3CN/rt | pyrrolidine | 24 | 24 |
3 | AuCl | CH3CN/rt | pyrrolidine | 24 | 35 |
4 | AuCl3 | CH3CN/rt | pyrrolidine | 24 | 48 |
5 | HAuCl4 | CH3CN/rt | pyrrolidine | 24 | 50 |
6 | PPh3AuCl | CH3CN/rt | pyrrolidine | 24 | 30 |
7 | PdCl2 | CH3CN/rt | pyrrolidine | 24 | 25 |
8 | CuI | CH3CN/100 °C | pyrrolidine | 2 | 65 |
9 | — | CH3CN/100 °C | pyrrolidine | 3 | — |
10 | CuI | CH3CN/100 °C | pyrrolidine | 3 | — |
The required product was obtained but in very low yield, and the reaction time was prolonged to more than 24 h. When the reaction temperature was raised to 100 °C in the presence of CuI and pyrrolidine in CH3CN, the desired product was obtained in 65% in 2 h.
Encouraged by this promising result, the scope of the reaction was tested with a number of salicylaldehydes. As is apparent from Table 2, the reaction is highly versatile, working efficiently with both electron-rich and -poor substrates. Substrates 1b–h with various alkyl substituents produced the corresponding coumarins 2b–h in 50–82% yield.
Table 2: Synthesis of coumarins 2 from salicylaldehydes 1 by A3 coupling/cycloisomerization.
entry | substrate 1a | product 2 | yield (%)b | entry | substrate 1a | product 2 | yield (%)b |
---|---|---|---|---|---|---|---|
1 |
1a |
2a |
62 | 9 |
1i |
2i |
62 |
2 |
1b |
2b |
68 | 10 |
1j |
2j |
62 |
3 |
1c |
2c |
78 | 11 |
1k |
2k |
60 |
4 |
1d |
2d |
75 | 12 |
1l |
2l |
65 |
5 |
1e |
2e |
80 | 13 |
1m |
2m |
76 |
6 |
1f |
2f |
82 | 14 |
1n |
2n |
65 |
7 |
1g |
2g |
50 | 15 |
1o |
2o |
84 |
8 |
1h |
2h |
80 |
aAll reactions were conducted with 1 mmol substrate in 0.25 M concentration. bIsolated yields.
A slight reduction in yield was observed in the cases of halogen containing substrates. Thus, substrates 1i–l gave the required products 2i–l in 62–65% yield. Substrates 1m and 1n with extended conjugation also reacted well under the standardized conditions to give the corresponding products 2m and 2n in good yields (65–76%). The reaction is highly compatible with keto functionality, as is evident from the conversion of 1o to 2o in 84% yield. It should be noted that the reaction is limited to aldehydes and not to ketones, which do not undergo A3 coupling.
A plausible mechanism via a cooperative catalysis by Cu and pyrrolidine is described in Scheme 2 (with the assistance of the work reported by Patil et al. [24,32]). Initial condensation of pyrrolidine with salicylaldehyde 1 produced iminium intermediate A. The addition of copper ethoxyacetylide, formed on the reaction of ethoxyacetylene with Cu, to the iminium intermediate A yielded propargylamine intermediate B. Copper being coordinated with the amine group immediately activated the alkyne group to facilitate cycloisomerization with the phenoxy group, to produce vinyl ether C, which, being susceptible to hydrolysis, underwent water addition followed by an extrusion of the pyrrolidine molecule for further catalysis. The resulted intermediate D lost an EtOH molecule to furnish the required product 2.
Conclusion
In summary, a facile synthesis of coumarins is reported from readily available starting materials, i.e., salicylaldehydes and ethoxyacetylene, through a tandem A3 coupling and cycloisomerization cascade. The reaction was catalyzed by a pyrrolidine and copper iodide cooperative catalytic system, and the reaction was not observed in the absence of either of the catalysts. The yields are good to moderate and the reaction has a good substrate scope being compatible with halogen and keto groups. The process constitutes an easy and efficient access to highly valuable building blocks of natural products or biologically active compounds.
Supporting Information
Supporting Information File 1: Experimental procedures and product characterization for compounds 2a–o. | ||
Format: PDF | Size: 3.9 MB | Download |
Acknowledgments
We thank CSIR for the financial aid and Prof. Pierre Deslongchamps, emeritus professor at University of Laval, Canada, and Dr. T. K. Chakraborty, Director CSIR-CDRI for their constant encouragement. We thank SAIF division CDRI for the analytical data support. Generous financial aid from CSIR Network project "BSC0102" (CSIR-CDRI-THUNDER) is acknowledged. CDRI Communication NO. 8371.
References
-
Peshkov, V. A.; Pereshivko, O. P.; Van der Eycken, E. V. Chem. Soc. Rev. 2012, 41, 3790. doi:10.1039/c2cs15356d
Return to citation in text: [1] -
Mothe, S. R.; Kothandaraman, P.; Lauw, S. J. L.; Chin, S. M. W. C.; Chan, P. W. H. Chem.–Eur. J. 2012, 18, 6133. doi:10.1002/chem.201200578
Return to citation in text: [1] -
Inamoto, K.; Asano, N.; Nakamura, Y.; Yonemoto, M.; Kondo, Y. Org. Lett. 2012, 14, 2622. doi:10.1021/ol300958c
Return to citation in text: [1] -
Tomás-Mendivil, E.; Toullec, P. Y.; Diez, J.; Conejero, S.; Michelet, V.; Cadierno, V. Org. Lett. 2012, 14, 2520. doi:10.1021/ol300811e
Return to citation in text: [1] -
Kothandaraman, P.; Mothe, S. R.; Toh, S. S. M.; Chan, P. W. H. J. Org. Chem. 2011, 76, 7633. doi:10.1021/jo201208e
Return to citation in text: [1] -
Mancuso, R.; Mehta, S.; Gabriele, B.; Salerno, G.; Jenks, W. S.; Larock, R. C. J. Org. Chem. 2010, 75, 897. doi:10.1021/jo902333y
Return to citation in text: [1] -
Jiang, B.; Si, Y.-G. J. Org. Chem. 2002, 67, 9449. doi:10.1021/jo0204606
Return to citation in text: [1] -
Gabriele, B.; Mancuso, R.; Salerno, G.; Lupinacci, E.; Ruffolo, G.; Costa, M. J. Org. Chem. 2008, 73, 4971. doi:10.1021/jo8006495
Return to citation in text: [1] -
Hessian, K. O.; Flynn, B. L. Org. Lett. 2006, 8, 243. doi:10.1021/ol052518j
Return to citation in text: [1] -
Chen, Y.; Cho, C.-H.; Larock, R. C. Org. Lett. 2009, 11, 173. doi:10.1021/ol8021287
Return to citation in text: [1] -
Fischer, D.; Tomeba, H.; Pahadi, N. K.; Patil, N. T.; Huo, Z.; Yamamoto, Y. J. Am. Chem. Soc. 2008, 130, 15720. doi:10.1021/ja805326f
Return to citation in text: [1] -
Patil, N. T.; Kavthe, R. D.; Raut, V. S.; Shinde, V. S.; Sridhar, B. J. Org. Chem. 2008, 75, 1277. doi:10.1021/jo902293f
Return to citation in text: [1] -
Nishizawa, M.; Imagawa, H.; Yamamoto, H. Org. Biomol. Chem. 2010, 8, 511. doi:10.1039/b920434b
Return to citation in text: [1] -
Alcaide, B.; Almendros, P.; Alonso, J. M. Org. Biomol. Chem. 2011, 9, 4405. doi:10.1039/c1ob05249g
Return to citation in text: [1] -
Huo, Z.; Gridnev, I. D.; Yamamoto, Y. J. Org. Chem. 2010, 75, 1266. doi:10.1021/jo902603v
Return to citation in text: [1] -
Huo, Z.; Yamamoto, Y. Tetrahedron Lett. 2009, 50, 3651. doi:10.1016/j.tetlet.2009.03.129
And the references therein.
Return to citation in text: [1] -
Reddy, M. S.; Kumar, Y. K.; Thirupathi, N. Org. Lett. 2012, 14, 824. doi:10.1021/ol2033493
Return to citation in text: [1] [2] -
Reddy, M. S.; Thirupathi, N.; Babu, M. H. Eur. J. Org. Chem. 2012, 5803. doi:10.1002/ejoc.201200782
Return to citation in text: [1] [2] -
Reddy, M. S.; Thirupathi, N.; Kumar, Y. K. RSC Adv. 2012, 2, 3986. doi:10.1039/c2ra20213a
Return to citation in text: [1] [2] -
Ravindar, K.; Reddy, M. S.; Deslongchamps, P. Org. Lett. 2011, 13, 3178. doi:10.1021/ol201102x
Return to citation in text: [1] [2] -
Ravindar, K.; Reddy, M. S.; Lindqvist, L.; Pelletier, J.; Deslongchamps, P. J. Org. Chem. 2011, 76, 1269. doi:10.1021/jo102054r
Return to citation in text: [1] [2] -
Ravindar, K.; Reddy, M. S.; Lindqvist, L.; Pelletier, J.; Deslongchamps, P. Org. Lett. 2010, 12, 4420. doi:10.1021/ol1019663
Return to citation in text: [1] [2] -
Chernyak, D.; Chernyak, N.; Gevorgyan, V. Adv. Synth. Catal. 2010, 352, 961–966. doi:10.1002/adsc.201000015
Return to citation in text: [1] -
Patil, N. T.; Raut, V. S. J. Org. Chem. 2010, 75, 6961. doi:10.1021/jo101103a
Return to citation in text: [1] [2] -
Sakai, N.; Uchida, N.; Konakahara, T. Tetrahedron Lett. 2008, 49, 3437. doi:10.1016/j.tetlet.2008.03.111
Return to citation in text: [1] -
Yan, B.; Liu, Y. Org. Lett. 2007, 9, 4323. doi:10.1021/ol701886e
Return to citation in text: [1] -
Ohno, H.; Ohta, Y.; Oishi, S.; Fujii, N. Angew. Chem., Int. Ed. 2007, 46, 2295. doi:10.1002/anie.200604342
Return to citation in text: [1] -
Ohta, Y.; Chiba, H.; Oishi, S.; Fujii, N.; Ohno, H. J. Org. Chem. 2009, 74, 7052. doi:10.1021/jo901328q
Return to citation in text: [1] -
Chernyk, N.; Gevorgyan, V. Angew. Chem., Int. Ed. 2010, 49, 2743. doi:10.1002/anie.200907291
Return to citation in text: [1] -
Zhang, Q.; Chang, M.; Hu, X. Y.; Li, B. G.; Ji, J. H. J. Am. Chem. Soc. 2010, 132, 7256–7257. doi:10.1021/ja101804p
Return to citation in text: [1] -
Ye, Y.; Ding, Q.; Wu, J. Tetrahedron 2008, 64, 1378–1382. doi:10.1016/j.tet.2007.11.055
Return to citation in text: [1] -
Patil, N. T.; Nijamudheen, A.; Datta, A. J. Org. Chem. 2012, 77, 6179. doi:10.1021/jo300949d
Return to citation in text: [1] [2] -
Joule, J. A.; Mills, K. Heterocyclic Chemistry, 4th ed.; Blackwell Science Ltd: Oxford, 2006; p 170.
Return to citation in text: [1] -
Dayam, R.; Gundla, R.; Al-Mawsawi, L. Q.; Neamati, N. Med. Res. Rev. 2008, 28, 118. doi:10.1002/med.20116
Return to citation in text: [1] -
Thuong, P. T.; Hung, T. M.; Ngoc, T. M.; Ha, D. T.; Min, B. S.; Kwack, S. J.; Kang, T. S.; Choi, J. S.; Bae, K. Phytother. Res. 2010, 24, 101. doi:10.1002/ptr.2890
Return to citation in text: [1] -
Kostova, I. Curr. Med. Chem. - Anti-Cancer Agents 2005, 5, 29. doi:10.2174/1568011053352550
Return to citation in text: [1] -
Harris, E. B. J.; Banwell, M. G.; Willis, A. C. Tetrahedron Lett. 2011, 52, 6887. doi:10.1016/j.tetlet.2011.10.036
Return to citation in text: [1] -
Murray, R. D. H. Nat. Prod. Rep. 1995, 12, 477. doi:10.1039/np9951200477
Return to citation in text: [1] -
Estevez-Braun, A.; Gonzalez, A. G. Nat. Prod. Rep. 1997, 14, 465. doi:10.1039/np9971400465
Return to citation in text: [1] -
Zorn, J. A.; Wille, H.; Wolan, D. W.; Wells, J. A. J. Am. Chem. Soc. 2011, 133, 19630. doi:10.1021/ja208350u
Return to citation in text: [1] -
Gordo, J.; Avo, J.; Parola, A. J.; Lima, J. C.; Pereira, A.; Branco, P. S. Org. Lett. 2011, 13, 5112. doi:10.1021/ol201983u
Return to citation in text: [1] -
Hamdi, N.; Saoud, M.; Romerosa, A. 4-Hydroxy Coumarine: a Versatile Reagent for the Synthesis of Heterocyclic and Vanillin Ether Coumarins with Biological Activities. In Topics in Heterocyclic Chemistry; Khan, M. T. H., Ed.; Topics in Heterocyclic Chemistry, Vol. 11; Springer Verlag: Heidelberg, 2007; pp 283–301. doi:10.1007/7081_2007_062
Return to citation in text: [1] -
Reutrakul, V.; Leewanich, P.; Tuchinda, P.; Pohmakotr, M.; Jaipetch, T.; Sophasan, S.; Santisuk, T. Planta Med. 2003, 69, 1048. doi:10.1055/s-2003-45154
Return to citation in text: [1] -
Marcu, M. G.; Chadli, A.; Bouhouche, I.; Catelli, M.; Neckers, L. M. J. Biol. Chem. 2000, 275, 37181. doi:10.1074/jbc.M003701200
Return to citation in text: [1] -
Bras, G. L.; Radanyi, C.; Peyrat, J.-F.; Brion, J.-D.; Alami, M.; Marsaud, V.; Stella, B.; Renoir, J.-M. J. Med. Chem. 2007, 50, 6189. doi:10.1021/jm0707774
Return to citation in text: [1] -
Radanyi, C.; Bras, G. L.; Messaoudi, S.; Bouclier, C.; Peyrat, J.-F.; Brion, J.-D.; Marsaud, V.; Renoir, J.-M.; Alami, M. Bioorg. Med. Chem. Lett. 2008, 18, 2495. doi:10.1016/j.bmcl.2008.01.128
Return to citation in text: [1] -
Min, M.; Kim, B.; Hong, S. Org. Biomol. Chem. 2012, 10, 2692. doi:10.1039/c2ob07137a
Return to citation in text: [1] -
Schmidt, B.; Krehl, S. Chem. Commun. 2011, 47, 5879. doi:10.1039/c1cc11347j
Return to citation in text: [1] -
Audisio, D.; Messaoudi, S.; Brion, J.-D.; Alami, M. Eur. J. Org. Chem. 2010, 1046. doi:10.1002/ejoc.200901107
Return to citation in text: [1] -
Upadhyay, P. K.; Kumar, P. Tetrahedron Lett. 2009, 50, 236. doi:10.1016/j.tetlet.2008.10.133
Return to citation in text: [1] -
Yamamoto, Y.; Kirai, N. Org. Lett. 2008, 10, 5513. doi:10.1021/ol802239n
Return to citation in text: [1] -
Jia, C.; Piao, D.; Kitamura, T.; Fujiwara, Y. J. Org. Chem. 2000, 65, 7516. doi:10.1021/jo000861q
Return to citation in text: [1] -
Trost, B. M.; Toste, F. D.; Greenman, K. J. Am. Chem. Soc. 2003, 125, 4518. doi:10.1021/ja0286573
Return to citation in text: [1]
1. | Peshkov, V. A.; Pereshivko, O. P.; Van der Eycken, E. V. Chem. Soc. Rev. 2012, 41, 3790. doi:10.1039/c2cs15356d |
25. | Sakai, N.; Uchida, N.; Konakahara, T. Tetrahedron Lett. 2008, 49, 3437. doi:10.1016/j.tetlet.2008.03.111 |
24. | Patil, N. T.; Raut, V. S. J. Org. Chem. 2010, 75, 6961. doi:10.1021/jo101103a |
32. | Patil, N. T.; Nijamudheen, A.; Datta, A. J. Org. Chem. 2012, 77, 6179. doi:10.1021/jo300949d |
24. | Patil, N. T.; Raut, V. S. J. Org. Chem. 2010, 75, 6961. doi:10.1021/jo101103a |
23. | Chernyak, D.; Chernyak, N.; Gevorgyan, V. Adv. Synth. Catal. 2010, 352, 961–966. doi:10.1002/adsc.201000015 |
47. | Min, M.; Kim, B.; Hong, S. Org. Biomol. Chem. 2012, 10, 2692. doi:10.1039/c2ob07137a |
48. | Schmidt, B.; Krehl, S. Chem. Commun. 2011, 47, 5879. doi:10.1039/c1cc11347j |
49. | Audisio, D.; Messaoudi, S.; Brion, J.-D.; Alami, M. Eur. J. Org. Chem. 2010, 1046. doi:10.1002/ejoc.200901107 |
50. | Upadhyay, P. K.; Kumar, P. Tetrahedron Lett. 2009, 50, 236. doi:10.1016/j.tetlet.2008.10.133 |
51. | Yamamoto, Y.; Kirai, N. Org. Lett. 2008, 10, 5513. doi:10.1021/ol802239n |
52. | Jia, C.; Piao, D.; Kitamura, T.; Fujiwara, Y. J. Org. Chem. 2000, 65, 7516. doi:10.1021/jo000861q |
53. | Trost, B. M.; Toste, F. D.; Greenman, K. J. Am. Chem. Soc. 2003, 125, 4518. doi:10.1021/ja0286573 |
2. | Mothe, S. R.; Kothandaraman, P.; Lauw, S. J. L.; Chin, S. M. W. C.; Chan, P. W. H. Chem.–Eur. J. 2012, 18, 6133. doi:10.1002/chem.201200578 |
3. | Inamoto, K.; Asano, N.; Nakamura, Y.; Yonemoto, M.; Kondo, Y. Org. Lett. 2012, 14, 2622. doi:10.1021/ol300958c |
4. | Tomás-Mendivil, E.; Toullec, P. Y.; Diez, J.; Conejero, S.; Michelet, V.; Cadierno, V. Org. Lett. 2012, 14, 2520. doi:10.1021/ol300811e |
5. | Kothandaraman, P.; Mothe, S. R.; Toh, S. S. M.; Chan, P. W. H. J. Org. Chem. 2011, 76, 7633. doi:10.1021/jo201208e |
6. | Mancuso, R.; Mehta, S.; Gabriele, B.; Salerno, G.; Jenks, W. S.; Larock, R. C. J. Org. Chem. 2010, 75, 897. doi:10.1021/jo902333y |
7. | Jiang, B.; Si, Y.-G. J. Org. Chem. 2002, 67, 9449. doi:10.1021/jo0204606 |
8. | Gabriele, B.; Mancuso, R.; Salerno, G.; Lupinacci, E.; Ruffolo, G.; Costa, M. J. Org. Chem. 2008, 73, 4971. doi:10.1021/jo8006495 |
9. | Hessian, K. O.; Flynn, B. L. Org. Lett. 2006, 8, 243. doi:10.1021/ol052518j |
10. | Chen, Y.; Cho, C.-H.; Larock, R. C. Org. Lett. 2009, 11, 173. doi:10.1021/ol8021287 |
11. | Fischer, D.; Tomeba, H.; Pahadi, N. K.; Patil, N. T.; Huo, Z.; Yamamoto, Y. J. Am. Chem. Soc. 2008, 130, 15720. doi:10.1021/ja805326f |
12. | Patil, N. T.; Kavthe, R. D.; Raut, V. S.; Shinde, V. S.; Sridhar, B. J. Org. Chem. 2008, 75, 1277. doi:10.1021/jo902293f |
13. | Nishizawa, M.; Imagawa, H.; Yamamoto, H. Org. Biomol. Chem. 2010, 8, 511. doi:10.1039/b920434b |
14. | Alcaide, B.; Almendros, P.; Alonso, J. M. Org. Biomol. Chem. 2011, 9, 4405. doi:10.1039/c1ob05249g |
15. | Huo, Z.; Gridnev, I. D.; Yamamoto, Y. J. Org. Chem. 2010, 75, 1266. doi:10.1021/jo902603v |
16. |
Huo, Z.; Yamamoto, Y. Tetrahedron Lett. 2009, 50, 3651. doi:10.1016/j.tetlet.2009.03.129
And the references therein. |
17. | Reddy, M. S.; Kumar, Y. K.; Thirupathi, N. Org. Lett. 2012, 14, 824. doi:10.1021/ol2033493 |
18. | Reddy, M. S.; Thirupathi, N.; Babu, M. H. Eur. J. Org. Chem. 2012, 5803. doi:10.1002/ejoc.201200782 |
19. | Reddy, M. S.; Thirupathi, N.; Kumar, Y. K. RSC Adv. 2012, 2, 3986. doi:10.1039/c2ra20213a |
20. | Ravindar, K.; Reddy, M. S.; Deslongchamps, P. Org. Lett. 2011, 13, 3178. doi:10.1021/ol201102x |
21. | Ravindar, K.; Reddy, M. S.; Lindqvist, L.; Pelletier, J.; Deslongchamps, P. J. Org. Chem. 2011, 76, 1269. doi:10.1021/jo102054r |
22. | Ravindar, K.; Reddy, M. S.; Lindqvist, L.; Pelletier, J.; Deslongchamps, P. Org. Lett. 2010, 12, 4420. doi:10.1021/ol1019663 |
17. | Reddy, M. S.; Kumar, Y. K.; Thirupathi, N. Org. Lett. 2012, 14, 824. doi:10.1021/ol2033493 |
18. | Reddy, M. S.; Thirupathi, N.; Babu, M. H. Eur. J. Org. Chem. 2012, 5803. doi:10.1002/ejoc.201200782 |
19. | Reddy, M. S.; Thirupathi, N.; Kumar, Y. K. RSC Adv. 2012, 2, 3986. doi:10.1039/c2ra20213a |
20. | Ravindar, K.; Reddy, M. S.; Deslongchamps, P. Org. Lett. 2011, 13, 3178. doi:10.1021/ol201102x |
21. | Ravindar, K.; Reddy, M. S.; Lindqvist, L.; Pelletier, J.; Deslongchamps, P. J. Org. Chem. 2011, 76, 1269. doi:10.1021/jo102054r |
22. | Ravindar, K.; Reddy, M. S.; Lindqvist, L.; Pelletier, J.; Deslongchamps, P. Org. Lett. 2010, 12, 4420. doi:10.1021/ol1019663 |
30. | Zhang, Q.; Chang, M.; Hu, X. Y.; Li, B. G.; Ji, J. H. J. Am. Chem. Soc. 2010, 132, 7256–7257. doi:10.1021/ja101804p |
32. | Patil, N. T.; Nijamudheen, A.; Datta, A. J. Org. Chem. 2012, 77, 6179. doi:10.1021/jo300949d |
29. | Chernyk, N.; Gevorgyan, V. Angew. Chem., Int. Ed. 2010, 49, 2743. doi:10.1002/anie.200907291 |
33. | Joule, J. A.; Mills, K. Heterocyclic Chemistry, 4th ed.; Blackwell Science Ltd: Oxford, 2006; p 170. |
34. | Dayam, R.; Gundla, R.; Al-Mawsawi, L. Q.; Neamati, N. Med. Res. Rev. 2008, 28, 118. doi:10.1002/med.20116 |
35. | Thuong, P. T.; Hung, T. M.; Ngoc, T. M.; Ha, D. T.; Min, B. S.; Kwack, S. J.; Kang, T. S.; Choi, J. S.; Bae, K. Phytother. Res. 2010, 24, 101. doi:10.1002/ptr.2890 |
36. | Kostova, I. Curr. Med. Chem. - Anti-Cancer Agents 2005, 5, 29. doi:10.2174/1568011053352550 |
37. | Harris, E. B. J.; Banwell, M. G.; Willis, A. C. Tetrahedron Lett. 2011, 52, 6887. doi:10.1016/j.tetlet.2011.10.036 |
38. | Murray, R. D. H. Nat. Prod. Rep. 1995, 12, 477. doi:10.1039/np9951200477 |
39. | Estevez-Braun, A.; Gonzalez, A. G. Nat. Prod. Rep. 1997, 14, 465. doi:10.1039/np9971400465 |
40. | Zorn, J. A.; Wille, H.; Wolan, D. W.; Wells, J. A. J. Am. Chem. Soc. 2011, 133, 19630. doi:10.1021/ja208350u |
41. | Gordo, J.; Avo, J.; Parola, A. J.; Lima, J. C.; Pereira, A.; Branco, P. S. Org. Lett. 2011, 13, 5112. doi:10.1021/ol201983u |
42. | Hamdi, N.; Saoud, M.; Romerosa, A. 4-Hydroxy Coumarine: a Versatile Reagent for the Synthesis of Heterocyclic and Vanillin Ether Coumarins with Biological Activities. In Topics in Heterocyclic Chemistry; Khan, M. T. H., Ed.; Topics in Heterocyclic Chemistry, Vol. 11; Springer Verlag: Heidelberg, 2007; pp 283–301. doi:10.1007/7081_2007_062 |
43. | Reutrakul, V.; Leewanich, P.; Tuchinda, P.; Pohmakotr, M.; Jaipetch, T.; Sophasan, S.; Santisuk, T. Planta Med. 2003, 69, 1048. doi:10.1055/s-2003-45154 |
44. | Marcu, M. G.; Chadli, A.; Bouhouche, I.; Catelli, M.; Neckers, L. M. J. Biol. Chem. 2000, 275, 37181. doi:10.1074/jbc.M003701200 |
45. | Bras, G. L.; Radanyi, C.; Peyrat, J.-F.; Brion, J.-D.; Alami, M.; Marsaud, V.; Stella, B.; Renoir, J.-M. J. Med. Chem. 2007, 50, 6189. doi:10.1021/jm0707774 |
46. | Radanyi, C.; Bras, G. L.; Messaoudi, S.; Bouclier, C.; Peyrat, J.-F.; Brion, J.-D.; Marsaud, V.; Renoir, J.-M.; Alami, M. Bioorg. Med. Chem. Lett. 2008, 18, 2495. doi:10.1016/j.bmcl.2008.01.128 |
27. | Ohno, H.; Ohta, Y.; Oishi, S.; Fujii, N. Angew. Chem., Int. Ed. 2007, 46, 2295. doi:10.1002/anie.200604342 |
28. | Ohta, Y.; Chiba, H.; Oishi, S.; Fujii, N.; Ohno, H. J. Org. Chem. 2009, 74, 7052. doi:10.1021/jo901328q |
31. | Ye, Y.; Ding, Q.; Wu, J. Tetrahedron 2008, 64, 1378–1382. doi:10.1016/j.tet.2007.11.055 |
© 2013 Reddy et al; licensee Beilstein-Institut.
This is an Open Access article under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
The license is subject to the Beilstein Journal of Organic Chemistry terms and conditions: (http://www.beilstein-journals.org/bjoc)