Supporting Information
Supporting information contains experimental procedures for the synthesis of known compounds.
Supporting Information File 1: General experimental methods and detailed procedures for the synthesis of propynone 12b, Bohlmann–Rahtz pyridine 2b and Hantzsch dihydropyridines 15a, 15b and 15c. | ||
Format: PDF | Size: 199.1 KB | Download |
Cite the Following Article
One-step synthesis of pyridines and dihydropyridines in a continuous flow microwave reactor
Mark C. Bagley, Vincenzo Fusillo, Robert L. Jenkins, M. Caterina Lubinu and Christopher Mason
Beilstein J. Org. Chem. 2013, 9, 1957–1968.
https://doi.org/10.3762/bjoc.9.232
How to Cite
Bagley, M. C.; Fusillo, V.; Jenkins, R. L.; Lubinu, M. C.; Mason, C. Beilstein J. Org. Chem. 2013, 9, 1957–1968. doi:10.3762/bjoc.9.232
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Van Mileghem, S.; Veryser, C.; De Borggraeve, W. M. Durchflussunterstützte Synthese von Heterocyclen über Mehrkomponentenreaktionen. Flow-Chemie für die Synthese von Heterocyclen; Springer International Publishing, 2024; pp 147–176. doi:10.1007/978-3-031-51912-3_3
- Wong, S.; Dolzhenko, A. V. doi:10.1002/9783527844494.ch6
- Santosh V. Padghan. Polyhydroquinoline : Different Methods of Synthesis and its Various Biological Activities. International Journal of Scientific Research in Science and Technology 2023, 588–596. doi:10.32628/ijsrst52310474
- Jagadeesha, G.; Thimmegowda, N.; Mantelingu, K.; Prasanna, D.; Rangappa, K. Microwave-Assisted, Rapid Synthesis of Benzimidazole based Potential Anticancer Agent Methyl 1-benzyl-2-(4-fluoro-3-nitrophenyl)-1Hbenzo[ d]imidazole-5-carboxylate (TJ08) via T3P Mediated Cyclization. Asian Journal of Chemistry 2023, 35, 598–604. doi:10.14233/ajchem.2023.27480
- Khrustalev, D.; Yedrissov, A.; Khrustaleva, A.; Mustafin, M.; Bekisheva, K. An efficient method for the synthesis of 1,4-dihydropyridine derivatives in a flow microwave reactor. Materials Today: Proceedings 2023, 81, 1204–1208. doi:10.1016/j.matpr.2023.02.225
- Li, M.; Wu, X.; Han, D.; Peng, R.; Yang, Y.; Wu, L.; Zhang, W. A High-Efficiency Single-Mode Traveling Wave Reactor for Continuous Flow Processing. Processes 2022, 10, 1261. doi:10.3390/pr10071261
- Hapke, M. Comprehensive Heterocyclic Chemistry IV - Pyridines and Benzo Derivatives: Synthesis. Comprehensive Heterocyclic Chemistry IV; Elsevier, 2022; pp 150–216. doi:10.1016/b978-0-12-818655-8.00108-6
- Cioc, R.; Ruijter, E.; Orru, R. V. A. Multicomponent Synthesis: Cohesive Integration of Green Chemistry Principles. Methods in Pharmacology and Toxicology; Springer New York, 2021; pp 237–267. doi:10.1007/978-1-0716-1579-9_8
- Lambruschini, C.; Moni, L.; Basso, A. doi:10.1002/9783527832439.ch6
- Biswas, N.; Srimani, D. Synthesis of 1,8-Dioxo-decahydroacridine Derivatives via Ru-Catalyzed Acceptorless Dehydrogenative Multicomponent Reaction. The Journal of organic chemistry 2021, 86, 9733–9743. doi:10.1021/acs.joc.1c01075
- Martina, K.; Cravotto, G.; Varma, R. S. Impact of Microwaves on Organic Synthesis and Strategies toward Flow Processes and Scaling Up. The Journal of organic chemistry 2021, 86, 13857–13872. doi:10.1021/acs.joc.1c00865
- Alfano, A. I.; Brindisi, M.; Lange, H. Flow synthesis approaches to privileged scaffolds – recent routes reviewed for green and sustainable aspects. Green Chemistry 2021, 23, 2233–2292. doi:10.1039/d0gc03883k
- Ashok, D.; Reddy, M. R.; Dharavath, R.; Nagaraju, N.; Ramakrishna, K.; Gundu, S.; Sarasija, M. One-pot three-component condensation for the synthesis of 2,4,6-triarylpyridines and evaluation of their antimicrobial activity. Journal of Chemical Sciences 2021, 133, 1–8. doi:10.1007/s12039-021-01883-9
- Dolzhenko, A. V. Microwave-assisted multicomponent reactions. Green Sustainable Process for Chemical and Environmental Engineering and Science; Elsevier, 2021; pp 205–229. doi:10.1016/b978-0-12-819848-3.00003-7
- Soni, J. P.; Chemitikanti, K. S.; Joshi, S. V.; Shankaraiah, N. The microwave-assisted syntheses and applications of non-fused single-nitrogen-containing heterocycles. Organic & biomolecular chemistry 2020, 18, 9737–9761. doi:10.1039/d0ob01779e
- Triveni, S.; Babu, C. N.; Bhargav, E.; Jyothi, M. V. in silico Design, ADME Prediction, Molecular Docking, Synthesis of Novel Triazoles,Indazoles & Aminopyridines and in vitro Evaluation of Antitubercular Activity. Asian Journal of Chemistry 2020, 32, 2713–2721. doi:10.14233/ajchem.2020.22790
- Koduri, R. G.; Pagadala, R.; Varala, R.; Boodida, S. An effective process for the synthesis of dihydropyridines via SO4−2/SnO2‐catalyzed Hantzsch reaction. Journal of the Chinese Chemical Society 2020, 68, 333–337. doi:10.1002/jccs.202000264
- Heravi, M. M.; Zadsirjan, V. Direct synthesis of heterocycles via MCRs, using a name reaction. Recent Advances in Applications of Name Reactions in Multicomponent Reactions; Elsevier, 2020; pp 15–138. doi:10.1016/b978-0-12-818584-1.00002-1
- Brandão, P.; Pineiro, M.; Pinho e Melo, T. M. V. D. Flow Chemistry: Towards A More Sustainable Heterocyclic Synthesis. European Journal of Organic Chemistry 2019, 2019, 7188–7217. doi:10.1002/ejoc.201901335
- Ram, V. J.; Sethi, A.; Nath, M.; Pratap, R. Six-Membered Heterocycles. The Chemistry of Heterocycles; Elsevier, 2019; pp 3–391. doi:10.1016/b978-0-12-819210-8.00002-3
Patents
- JIANG BO; DU JIANYU. Preparing method for furo pyridine and benzo pyridine derivation compound. CN 106565723 A, April 19, 2017.