Cite the Following Article
Development of peptidomimetic ligands of Pro-Leu-Gly-NH2 as allosteric modulators of the dopamine D2 receptor
Swapna Bhagwanth, Ram K. Mishra and Rodney L. Johnson
Beilstein J. Org. Chem. 2013, 9, 204–214.
https://doi.org/10.3762/bjoc.9.24
How to Cite
Bhagwanth, S.; Mishra, R. K.; Johnson, R. L. Beilstein J. Org. Chem. 2013, 9, 204–214. doi:10.3762/bjoc.9.24
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Girmaw, F. Review on allosteric modulators of dopamine receptors so far. Health science reports 2024, 7, e1984. doi:10.1002/hsr2.1984
- Silva-Reis, S. C.; Correia, X. C.; Costa-Almeida, H. F.; Pires-Lima, B. L.; Maronde, D.; Costa, V. M.; García-Mera, X.; Cruz, L.; Brea, J.; Loza, M. I.; Rodríguez-Borges, J. E.; Sampaio-Dias, I. E. Stapling Amantadine to Melanostatin Neuropeptide: Discovery of Potent Positive Allosteric Modulators of the D2 Receptors. ACS medicinal chemistry letters 2023, 14, 1656–1663. doi:10.1021/acsmedchemlett.3c00264
- Kaczor, A. A.; Wróbel, T. M.; Bartuzi, D. Allosteric Modulators of Dopamine D2 Receptors for Fine-Tuning of Dopaminergic Neurotransmission in CNS Diseases: Overview, Pharmacology, Structural Aspects and Synthesis. Molecules (Basel, Switzerland) 2022, 28, 178. doi:10.3390/molecules28010178
- Aathi, M. S.; Kumar, C.; Prabhudesai, K. S.; Shanmugarajan, D.; Idicula-Thomas, S. Mapping of FSHR agonists and antagonists binding sites to identify potential peptidomimetic modulators. Biochimica et biophysica acta. Biomembranes 2021, 1864, 183842. doi:10.1016/j.bbamem.2021.183842
- Dias, I.; Silva-Reis, S. C.; Pires-Lima, B. L.; Correia, X. C.; Costa-Almeida, H. F. A Convenient On-Site Oxidation Strategy for the N-hydroxylation of Melanostatin Neuropeptide using Cope Elimination. Synthesis 2021, 54, 2031–2036. doi:10.1055/a-1695-1095
- Olson, K. M.; Traynor, J. R.; Alt, A. Allosteric Modulator Leads Hiding in Plain Site: Developing Peptide and Peptidomimetics as GPCR Allosteric Modulators. Frontiers in chemistry 2021, 9, 671483. doi:10.3389/fchem.2021.671483
- Sampaio-Dias, I. E.; Rodríguez-Borges, J. E.; Yáñez-Pérez, V.; Arrasate, S.; Llorente, J.; Brea, J.; Bediaga, H.; Viña, D.; Loza, M. I.; Caamaño, O.; García-Mera, X.; González-Díaz, H. Synthesis, Pharmacological, and Biological Evaluation of 2-Furoyl-Based MIF-1 Peptidomimetics and the Development of a General-Purpose Model for Allosteric Modulators (ALLOPTML). ACS chemical neuroscience 2020, 12, 203–215. doi:10.1021/acschemneuro.0c00687
- Mulamreddy, R.; Lubell, W. D. Constrained Glu‐Gly and Gln‐Gly dipeptide surrogates from γ‐substituted α‐amino‐δ‐lactam synthesis. Peptide Science 2020, 112. doi:10.1002/pep2.24149
- López-Rodríguez, M. L.; Benhamú, B.; Vázquez-Villa, H. Allosteric modulators targeting GPCRs. GPCRs; Elsevier, 2020; pp 195–241. doi:10.1016/b978-0-12-816228-6.00011-8
- Geranurimi, A.; Lubell, W. D. Diversity-Oriented Syntheses of β-Substituted α-Amino γ-Lactam Peptide Mimics with Constrained Backbone and Side Chain Residues. Organic letters 2018, 20, 6126–6129. doi:10.1021/acs.orglett.8b02575
- Wold, E. A.; Chen, J.; Cunningham, K. A.; Zhou, J. Allosteric Modulation of Class A GPCRs: Targets, Agents, and Emerging Concepts. Journal of medicinal chemistry 2018, 62, 88–127. doi:10.1021/acs.jmedchem.8b00875
- Oliver, M.; Gadais, C.; García-Pindado, J.; Teixidó, M.; Lensen, N.; Chaume, G.; Brigaud, T. Trifluoromethylated proline analogues as efficient tools to enhance the hydrophobicity and to promote passive diffusion transport of the L-prolyl-L-leucyl glycinamide (PLG) tripeptide. RSC advances 2018, 8, 14597–14602. doi:10.1039/c8ra02511h
- St-Cyr, D. J.; García-Ramos, Y.; Doan, N.-D.; Lubell, W. D. Aminolactam, N-Aminoimidazolone, and N-Aminoimdazolidinone Peptide Mimics. Topics in Heterocyclic Chemistry; Springer International Publishing, 2017; pp 125–175. doi:10.1007/7081_2017_204
- Sampaio-Dias, I. E.; Sousa, C.; García-Mera, X.; da Costa, J. F.; Caamaño, O.; Rodríguez-Borges, J. E. Novel L-prolyl-L-leucylglycinamide (PLG) tripeptidomimetics based on a 2-azanorbornane scaffold as positive allosteric modulators of the D2R. Organic & biomolecular chemistry 2016, 14, 11065–11069. doi:10.1039/c6ob02248k
- Chingle, R.; Lubell, W. D. Azopeptides: Synthesis and Pericyclic Chemistry. Organic letters 2015, 17, 5400–5403. doi:10.1021/acs.orglett.5b02723
- Aillard, B.; Kilburn, J. D.; Blaydes, J. P.; Tizzard, G. J.; Findlow, S. C.; Werner, J. M.; Bloodworth, S. Synthesis and evaluation of a (3R,6S,9S)-2-oxo-1-azabicyclo[4.3.0]nonane scaffold as a mimic of Xaa-trans-Pro in poly-L-proline type II helix conformation. Organic & biomolecular chemistry 2015, 13, 4562–4569. doi:10.1039/c5ob00180c
- Basu, D.; Tian, Y.; Hui, P.; Bhandari, J.; Johnson, R. L.; Mishra, R. K. Change in expression of vesicular protein synapsin II by chronic treatment with D2 allosteric modulator PAOPA. Peptides 2015, 66, 58–62. doi:10.1016/j.peptides.2015.01.004
- Belen’kii, L. I.; Evdokimenkova, Y. B. The Literature of Heterocyclic Chemistry, Part XIII, 2012–2013. Advances in Heterocyclic Chemistry 2015, 116, 193–363. doi:10.1016/bs.aihch.2015.04.002
- Scognamiglio, P. L.; Morelli, G.; Marasco, D. Synthetic and Structural Routes for the Rational Conversion of Peptides into Small Molecules. Methods in molecular biology (Clifton, N.J.) 2014, 1268, 159–193. doi:10.1007/978-1-4939-2285-7_8
- Nair, R. V.; Baravkar, S. B.; Ingole, T. S.; Sanjayan, G. J. Synthetic turn mimetics and hairpin nucleators: Quo Vadimus?. Chemical communications (Cambridge, England) 2014, 50, 13874–13884. doi:10.1039/c4cc03114h