Post-Ugi gold-catalyzed diastereoselective domino cyclization for the synthesis of diversely substituted spiroindolines

  1. 1,2 ,
  2. 1 ,
  3. 1,3 ,
  4. 2 ,
  5. 2 and
  6. 1
1Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, 3001, Leuven, Belgium
2Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110 007, India
3Chemistry Building-4.20b, School of Chemistry, The University of Manchester, Manchester M13 9PL, UK
  1. Corresponding author email
Guest Editor: T. J. J. Müller
Beilstein J. Org. Chem. 2013, 9, 2097–2102. https://doi.org/10.3762/bjoc.9.246
Received 22 Jul 2013, Accepted 13 Sep 2013, Published 14 Oct 2013
Full Research Paper
cc by logo

Abstract

An Ugi four-component reaction of propargylamine with 3-formylindole and various acids and isonitriles produces adducts which are subjected to a cationic gold-catalyzed diastereoselective domino cyclization to furnish diversely substituted spiroindolines. All the reactions run via an exo-dig attack in the hydroarylation step followed by an intramolecular diastereoselective trapping of the imminium ion. The whole sequence is atom economic and the application of a multicomponent reaction assures diversity.

Introduction

The importance of nitrogen containing heterocyclic molecules in chemical biology is undisputed. The synthesis of such biologically interesting heterocycles is generally target-oriented, inspired by nature or randomly directed. In all these cases the design of a synthetic sequence to produce a library of diversely substituted molecules is the first and most important step. The basic concept of diversity-oriented synthesis (DOS) involves short reaction sequences, a strong focus on bond construction, and functional group compatibility [1-3]. Reactions that involve multiple bond formation, such as multicomponent reactions [4-9] and tandem reactions [10-16], are very useful in this context.

As an efficient activator of alkynes, gold has recently attracted a lot of attention [17-36]. Many tandem approaches have been reported which utilize this coinage metal for the construction of variously substituted complex molecules [37-43]. We have recently reported a post-Ugi gold-catalyzed intramolecular domino cyclization sequence which produces spiroindolines (Scheme 1) [44]. The first step in this sequence is an Ugi four-component reaction (Ugi-4CR) [4,5] with 2-alkynoic acid as an alkyne source. The second step is a cationic gold-catalyzed intramolecular hydroarylation tandem cyclization to produce spiroindolines with complete diastereoselectivity. This synthetic sequence is atom economic and mild conditions are applied to generate a very complex molecular structure from readily available starting materials. Based on this work and our continuous interest in transition metal catalysis [45-54], multicomponent reactions [55-57] and the chemistry of the indole core [58-60], we herein report a post-Ugi gold-catalyzed intramolecular domino cyclization sequence for the synthesis of spiroindolines with propargylamines as an alkyne source (Scheme 1).

[1860-5397-9-246-i1]

Scheme 1: Gold-catalyzed approaches towards spiroindolines.

Results and Discussion

The use of benzoic acid as an acid component in the Ugi-4CR did not produce the Ugi-adduct in good yield even after a prolonged reaction time. Therefore, we switched to phenylacetic acid. The Ugi-4CR of indole-3-carboxaldehyde (1a), propargylamine (2a), phenylacetic acid (3a) and tert-butylisonitrile (4a) in methanol at 50 °C gave the Ugi-adduct 5a with an excellent yield of 94%. With compound 5a in hand we were keen to apply the previously developed conditions for intramolecular hydroarylation [44]. Reaction of 5a with 5 mol % of Au(PPh3)SbF6 in chloroform at room temperature produced the desired spiroindoline 6a in a moderate yield of 55% along with some unidentified byproducts (Table 1, entry 1). The use of a protic acid with a gold catalyst is known in the literature [61-64]. To our delight, when the above reaction was carried out with 1 equivalent of trifluoroacetic acid (TFA) the yield was improved to 81% (Table 1, entry 2). Apart from being a good proton source TFA might be working as a coligand.

Table 1: Optimization for the intramolecular hydroarylation.a

[Graphic 1]
Entry Catalyst (mol %) Acid (1 equiv) Time h % Yieldb
1 Au(PPh3)SbF6 (5) 2 55c
2 Au(PPh3)SbF6 (5) TFA 2 81
3 PtCl2 (5) 10 d
4 PtCl2 (5) TFA 10 d
5 TFA 10 d
6 Au(PPh3)SbF6 (5) PTSA 2 70

aAll the reactions were run on 0.1 mmol scale of 5a with chloroform (2 mL) as a solvent at rt. bIsolated yields. cUnidentified byproducts were formed. dNo conversion.

Experiments with PtCl2 as a catalyst did not show any conversion and the starting material was recovered quantitatively (Table 1, entries 3 and 4). In absence of the gold catalyst no product could be observed (Table 1, entry 5). The application of p-toluenesulfonic acid (PTSA) instead of TFA did not improve the outcome (Table 1, entry 6).

Having the optimized conditions in hand (Table 1, entry 2), various Ugi-adducts 5b–q were synthesized and subjected to this hydroarylation domino cyclization sequence (Table 2). Different substituents are well-tolerated and the sprioindolines were obtained in good to excellent yields. A methyl substituent on the indole nitrogen did not hamper the domino cyclization (Table 2, entries 4, 6, 11, 12, 14, 15). Substituents like tert-butyl, cyclohexyl and n-butyl on the isonitrile are well-tolerated for the domino cyclization on the second position of the indole (Table 2, entries 1–16). Regarding the substituents coming from the acid part, tert-butyl gave a decreased yield probably due to steric hindrance (Table 2, entry 5). It is noteworthy that the gold-catalyzed intramolecular hydroarylation exclusively gives the exo-dig product in all cases and with complete diastereoselectivity.

Table 2: Scope and limitations of intramolecular domino cyclization.a

Entry Ugi adduct 5 Spiroindolines 6 (+/−) Entry Ugi adduct 5 Spiroindolines 6 (+/−)
1 [Graphic 2]
5b, 87%
[Graphic 3]
6b, 70%
9 [Graphic 4]
5j, 89%
[Graphic 5]
6j, 75%
2 [Graphic 6]
5c, 86%
[Graphic 7]
6c, 60%
10 [Graphic 8]
5k, 63%
[Graphic 9]
6k, 80%
3 [Graphic 10]
5d, 69%
[Graphic 11]
6d, 76%
11 [Graphic 12]
5l, 77%
[Graphic 13]
6l, 74%
4 [Graphic 14]
5e, 72%
[Graphic 15]
6e, 66%
12 [Graphic 16]
5m, 74%
[Graphic 17]
6m, 68%
5 [Graphic 18]
5f, 68%
[Graphic 19]
6f, 40%
13 [Graphic 20]
5n, 65%
[Graphic 21]
6n, 72%
6 [Graphic 22]
5g, 77%
[Graphic 23]
6g, 71%
14 [Graphic 24]
5o, 68%
[Graphic 25]
6o, 60%
7 [Graphic 26]
5h, 79%
[Graphic 27]
6h, 83%
15 [Graphic 28]
5p, 58%
[Graphic 29]
6p, 84%
8 [Graphic 30]
5i, 67%
[Graphic 31]
6i, 69%
16 [Graphic 32]
5q, 59%
[Graphic 33]
6q, 69%

aAll the reaction were run on a 0.2 mmol scale of 5 in a screw capped vial employing the optimal conditions of Table 1. Cy = cyclohexyl, Bn = benzyl, PMB = p-methoxybenzyl, Bu = n-butyl.

A plausible mechanism [30,44] is shown in Scheme 2 with only the R-isomer of the Ugi-adduct 5a to simplify the discussion. The cationic gold coordinates with the terminal alkyne which becomes activated for a nucleophilic attack. This can occur from both sides of the indole core. When the attack occurs from the back side of the indole core, spiro intermediate B will be formed. However, in this spiro intermediate the intramolecular trapping of the imminium ion by the amidic NH is sterically impossible and thus the intermediate reopens to intermediate A. If the attack takes place from the front side of the indole core, intermediate C is formed and trapping is possible. After deprotonation and protodeauration the desired spiroindoline 6a is formed with the stereochemistry of two new stereocenters S.

[1860-5397-9-246-i2]

Scheme 2: Plausible mechanism for the domino sequence.

Conclusion

In conclusion we have developed a diversity-oriented post-Ugi gold-catalyzed intramolecular hydroarylation domino cyclization sequence for the diastereoselective synthesis of spiroindolines. The mild reaction conditions and short synthetic sequence are the merits of this method. The flexibility given by the multicomponent reaction assures the generation of diversity.

Experimental

General procedure for the synthesis of spiroindolines 6aq

To a screw capped vial Au(PPh3)Cl (5 mol %) and AgSbF6 (5 mol %) were loaded along with chloroform (2 mL). Ugi product 5 (0.2 mmol) was added followed by TFA (1 equiv), and the reaction mixture was stirred at rt. After completion, the reaction mixture was partitioned between EtOAc (100 mL) and 2 N K2CO3 solution (2 × 50 mL). The organic layer was washed with brine (50 mL), dried over magnesium sulfate, and evaporated under reduced pressure. The obtained residue was purified by silica gel column chromatography (10% diethyl ether in dichloromethane) to afford compound 6aq.

Supporting Information

Supporting Information File 1: Experimental section.
Format: PDF Size: 1.6 MB Download

Acknowledgements

The authors wish to thank the F.W.O [Fund for Scientific Research – Flanders (Belgium)] and the Research Fund of the University of Leuven (KU Leuven) for financial support. A.K. is thankful to EMA2experts (Erasmus Mundus Action 2, Lot 11 Asia: Experts) for providing a doctoral exchange scholarship, and D.D.V. is thankful to EMECW, lot 13 (Erasmus Mundus External Cooperation Window, Lot 13) for providing a doctoral scholarship. The authors thank Ir. B. Demarsin for HRMS measurements.

References

  1. Ruijter, E.; Scheffelaar, R.; Orru, R. V. A. Angew. Chem., Int. Ed. 2011, 50, 6234–6246. doi:10.1002/anie.201006515
    Return to citation in text: [1]
  2. Ganem, B. Acc. Chem. Res. 2009, 42, 463–472. doi:10.1021/ar800214s
    Return to citation in text: [1]
  3. El Kaïm, L.; Grimaud, L. Mol. Diversity 2010, 14, 855–867. doi:10.1007/s11030-009-9175-3
    Return to citation in text: [1]
  4. Dömling, A.; Ugi, I. Angew. Chem., Int. Ed. 2000, 39, 3168–3210. doi:10.1002/1521-3773(20000915)39:18<3168::AID-ANIE3168>3.0.CO;2-U
    Return to citation in text: [1] [2]
  5. Dömling, A. Chem. Rev. 2006, 106, 17–89. doi:10.1021/cr0505728
    Return to citation in text: [1] [2]
  6. Ramón, D. J.; Yus, M. Angew. Chem., Int. Ed. 2005, 44, 1602–1634. doi:10.1002/anie.200460548
    Return to citation in text: [1]
  7. Dömling, A.; Wang, W.; Wang, K. Chem. Rev. 2012, 112, 3083–3135. doi:10.1021/cr100233r
    Return to citation in text: [1]
  8. Shriri, M. Chem. Rev. 2012, 112, 3508–3549. doi:10.1021/cr2003954
    Return to citation in text: [1]
  9. Chen, Z.; Zheng, D.; Wu, J. Org. Lett. 2011, 13, 848–851. doi:10.1021/ol102775s
    Return to citation in text: [1]
  10. Tietze, L. F.; Rackelmann, N. Pure Appl. Chem. 2004, 76, 1967–1983. doi:10.1351/pac200476111967
    Return to citation in text: [1]
  11. Yang, J.; Xie, X.; Wang, Z.; Mei, R.; Zheng, H.; Wang, X.; Zhang, L.; Qi, J.; She, X. J. Org. Chem. 2013, 78, 1230–1235. doi:10.1021/jo302404v
    Return to citation in text: [1]
  12. Cheng, H.-G.; Lu, L.-Q.; Wang, T.; Yang, Q.-Q.; Liu, X.-P.; Li, Y.; Deng, Q.-H.; Chen, J.-R.; Xiao, W.-J. Angew. Chem., Int. Ed. 2013, 52, 3250–3254. doi:10.1002/anie.201209998
    Return to citation in text: [1]
  13. El Kaïm, L.; Grimaud, L.; Le Goff, X.-F.; Menes-Arzate, M.; Miranda, L. D. Chem. Commun. 2011, 47, 8145–8147. doi:10.1039/c1cc12236c
    Return to citation in text: [1]
  14. Bai, B.; Li, D.-S.; Huang, S.-Z.; Ren, J.; Zhu, H.-J. Nat. Prod. Bioprospect. 2012, 2, 53–58. doi:10.1007/s13659-012-0003-6
    Return to citation in text: [1]
  15. Lajiness, J. P.; Jiang, W.; Boger, D. L. Org. Lett. 2012, 14, 2078–2081. doi:10.1021/ol300599p
    Return to citation in text: [1]
  16. Fan, F.; Xie, W.; Ma, D. Org. Lett. 2012, 14, 1405–1407. doi:10.1021/ol3003496
    Return to citation in text: [1]
  17. Fürstner, A. Chem. Soc. Rev. 2009, 38, 3208–3221. doi:10.1039/b816696j
    Return to citation in text: [1]
  18. Dyker, G. Angew. Chem., Int. Ed. 2000, 39, 4237–4239. doi:10.1002/1521-3773(20001201)39:23<4237::AID-ANIE4237>3.0.CO;2-A
    Return to citation in text: [1]
  19. Hashmi, A. S. K.; Hutchings, G. Angew. Chem., Int. Ed. 2006, 45, 7896–7936. doi:10.1002/anie.200602454
    Return to citation in text: [1]
  20. Fürstner, A.; Davies, P. W. Angew. Chem., Int. Ed. 2007, 46, 3410–3449. doi:10.1002/anie.200604335
    Return to citation in text: [1]
  21. Gorin, D. J.; Sherry, B. D.; Toste, F. D. Chem. Rev. 2008, 108, 3351–3378. doi:10.1021/cr068430g
    Return to citation in text: [1]
  22. Jiménez-Núñez, E.; Echavarren, A. M. Chem. Rev. 2008, 108, 3326–3350. doi:10.1021/cr0684319
    Return to citation in text: [1]
  23. Li, Z. G.; Brouwer, C.; He, C. Chem. Rev. 2008, 108, 3239–3265. doi:10.1021/cr068434l
    Return to citation in text: [1]
  24. Arcadi, A. Chem. Rev. 2008, 108, 3266–3325. doi:10.1021/cr068435d
    Return to citation in text: [1]
  25. Hashmi, A. S. K.; Rudolph, M. Chem. Soc. Rev. 2008, 37, 1766–1775. doi:10.1039/b615629k
    Return to citation in text: [1]
  26. Rudolph, M.; Hashmi, A. S. K. Chem. Soc. Rev. 2012, 41, 2448–2462. doi:10.1039/c1cs15279c
    Return to citation in text: [1]
  27. Echavarren, A. M. Nat. Chem. 2009, 1, 431–433. doi:10.1038/nchem.344
    Return to citation in text: [1]
  28. Jiménez-Núñez, E.; Echavarren, A. M. Chem. Commun. 2007, 333–346. doi:10.1039/b612008c
    Return to citation in text: [1]
  29. Rudolph, M.; Hashmi, A. S. K. Chem. Commun. 2011, 47, 6536–6544. doi:10.1039/c1cc10780a
    Return to citation in text: [1]
  30. Hashmi, A. S. K. Angew. Chem., Int. Ed. 2010, 49, 5232–5241. doi:10.1002/anie.200907078
    Return to citation in text: [1] [2]
  31. Ferrer, C.; Echavarren, A. M. Angew. Chem., Int. Ed. 2006, 45, 1105–1109. doi:10.1002/anie.200503484
    Return to citation in text: [1]
  32. Ferrer, C.; Amijs, C. H. M.; Echavarren, A. M. Chem.–Eur. J. 2007, 13, 1358–1373. doi:10.1002/chem.200601324
    Return to citation in text: [1]
  33. Ferrer, C.; Escribano-Cuesta, A.; Echavarren, A. M. Tetrahedron 2009, 65, 9015–9020. doi:10.1016/j.tet.2009.08.067
    Return to citation in text: [1]
  34. Hashmi, A. S. K.; Yang, W.; Rominger, F. Angew. Chem., Int. Ed. 2011, 50, 5762–5765. doi:10.1002/anie.201100989
    Return to citation in text: [1]
  35. Hashmi, A. S. K.; Yang, W.; Rominger, F. Chem.–Eur. J. 2012, 18, 6576–6580. doi:10.1002/chem.201200314
    Return to citation in text: [1]
  36. Chaładaj, W.; Corbet, M.; Fürstner, A. Angew. Chem., Int. Ed. 2012, 51, 6929–6933. doi:10.1002/anie.201203180
    Return to citation in text: [1]
  37. Loh, C. C. J.; Badorrek, J.; Raabe, G.; Enders, D. Chem.–Eur. J. 2011, 17, 13409–13414. doi:10.1002/chem.201102793
    Return to citation in text: [1]
  38. Lu, Y.; Du, X.; Jia, X.; Liu, Y. Adv. Synth. Catal. 2009, 351, 1517–1522. doi:10.1002/adsc.200900068
    Return to citation in text: [1]
  39. Xie, X.; Du, X.; Chen, Y.; Liu, Y. J. Org. Chem. 2011, 76, 9175–9181. doi:10.1021/jo2017668
    Return to citation in text: [1]
  40. Zhang, L. J. Am. Chem. Soc. 2005, 127, 16804–16805. doi:10.1021/ja056419c
    Return to citation in text: [1]
  41. Cera, G.; Crispino, P.; Monari, M.; Bandini, M. Chem. Commun. 2011, 47, 7803–7805. doi:10.1039/c1cc12328a
    Return to citation in text: [1]
  42. Cera, G.; Chiarucci, M.; Mazzanti, A.; Mancinelli, M.; Bandini, M. Org. Lett. 2012, 14, 1350–1353. doi:10.1021/ol300297t
    Return to citation in text: [1]
  43. Liu, Y.; Xu, W.; Wang, W. Org. Lett. 2010, 12, 1448–1451. doi:10.1021/ol100153h
    Return to citation in text: [1]
  44. Modha, S. G.; Kumar, A.; Vachhani, D. D.; Jacobs, J.; Sharma, S. K.; Parmar, V. S.; Van Meervelt, L.; Van der Eycken, E. V. Angew. Chem., Int. Ed. 2012, 51, 9572–9575. doi:10.1002/anie.201205052
    Return to citation in text: [1] [2] [3]
  45. Modha, S. G.; Kumar, A.; Vachhani, D. D.; Sharma, S. K.; Parmar, V. S.; Van der Eycken, E. V. Chem. Commun. 2012, 48, 10916–10918. doi:10.1039/c2cc35900f
    Return to citation in text: [1]
  46. Vachhani, D. D.; Galli, M.; Jacobs, J.; Van Meervelt, L.; Van der Eycken, E. V. Chem. Commun. 2013, 49, 7171–7173. doi:10.1039/c3cc43418d
    Return to citation in text: [1]
  47. Modha, S. G.; Mehta, V. P.; Van der Eycken, E. V. Chem. Soc. Rev. 2013, 42, 5042–5055. doi:10.1039/c3cs60041f
    Return to citation in text: [1]
  48. Kumar, A.; Vachhani, D. D.; Modha, S. G.; Sharma, S. K.; Parmar, V. S.; Van der Eycken, E. V. Eur. J. Org. Chem. 2013, 2288–2292. doi:10.1002/ejoc.201300132
    Return to citation in text: [1]
  49. Vachhani, D. D.; Sharma, A.; Van der Eycken, E. J. Org. Chem. 2012, 77, 8768–8774. doi:10.1021/jo301401q
    Return to citation in text: [1]
  50. Vachhani, D. D.; Mehta, V. P.; Modha, S. G.; Van Hecke, K.; Van Meervelt, L.; Van der Eycken, E. V. Adv. Synth. Catal. 2012, 354, 1593–1599. doi:10.1002/adsc.201100881
    Return to citation in text: [1]
  51. Vachhani, D. D.; Kumar, A.; Modha, S. G.; Sharma, S. K.; Parmar, V. S.; Van der Eycken, E. V. Eur. J. Org. Chem. 2013, 1223–1227. doi:10.1002/ejoc.201201587
    Return to citation in text: [1]
  52. Modha, S. G.; Trivedi, J. C.; Mehta, V. P.; Ermolat’ev, D. S.; Van der Eycken, E. V. J. Org. Chem. 2011, 76, 846–856. doi:10.1021/jo102089h
    Return to citation in text: [1]
  53. Modha, S. G.; Mehta, V. P.; Ermolat’ev, D. S.; Balzarini, J.; Van Hecke, K.; Van Meervelt, L.; Van der Eycken, E. V. Mol. Diversity 2010, 14, 767–776. doi:10.1007/s11030-009-9221-1
    Return to citation in text: [1]
  54. Kumar, A.; Li, Z.; Sharma, S. K.; Parmar, V. S.; Van der Eycken, E. V. Org. Lett. 2013, 15, 1874–1877. doi:10.1021/ol400526a
    Return to citation in text: [1]
  55. Mehta, V. P.; Modha, S. G.; Ruijter, E.; Van Hecke, K.; Van Meervelt, L.; Pannecouque, C.; Balzarini, J.; Orru, R. V. A.; Van der Eycken, E. V. J. Org. Chem. 2011, 76, 2828–2839. doi:10.1021/jo200251q
    Return to citation in text: [1]
  56. Peshkov, V. A.; Pereshivko, O. P.; Van der Eycken, E. V. Chem. Soc. Rev. 2012, 41, 3790–3807. doi:10.1039/c2cs15356d
    Return to citation in text: [1]
  57. Vachhani, D. D.; Sharma, A.; Van der Eycken, E. V. Angew. Chem., Int. Ed. 2013, 52, 2547–2550. doi:10.1002/anie.201209312
    Return to citation in text: [1]
  58. Modha, S. G.; Vachhani, D. D.; Jacobs, J.; Van Meervelt, L.; Van der Eycken, E. V. Chem. Commun. 2012, 48, 6550–6552. doi:10.1039/c2cc32586a
    Return to citation in text: [1]
  59. Donets, P. A.; Van Hecke, K.; Van Meervelt, L.; Van der Eycken, E. V. Org. Lett. 2009, 11, 3618–3621. doi:10.1021/ol901356h
    Return to citation in text: [1]
  60. Donets, P. A.; Van der Eycken, E. V. Synthesis 2011, 2147–2153. doi:10.1055/s-0030-1260057
    Return to citation in text: [1]
  61. Zhou, C.-Y.; Chan, P. W. H.; Che, C.-M. Org. Lett. 2006, 8, 325–328. doi:10.1021/ol052696c
    Return to citation in text: [1]
  62. Brand, J. P.; Waser, J. Angew. Chem., Int. Ed. 2010, 49, 7304–7307. doi:10.1002/anie.201003179
    Return to citation in text: [1]
  63. Vachhani, D. D.; Modha, S. G.; Sharma, A.; Van der Eycken, E. V. Tetrahedron 2013, 69, 359–365. doi:10.1016/j.tet.2012.10.019
    Return to citation in text: [1]
  64. Tubaro, C.; Baron, M.; Biffis, A.; Basato, M. Beilstein J. Org. Chem. 2013, 9, 246–253. doi:10.3762/bjoc.9.29
    Return to citation in text: [1]
Other Beilstein-Institut Open Science Activities