Synthesis of axially chiral gold complexes and their applications in asymmetric catalyses

  1. 1 ,
  2. 1 and
  3. 1,2
1Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, and 130 MeiLong Road, Shanghai 200237, People’s Republic of China,
2State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, People’s Republic of China
  1. Corresponding author email
Guest Editor: F. D. Toste
Beilstein J. Org. Chem. 2013, 9, 2224–2232. https://doi.org/10.3762/bjoc.9.261
Received 02 Jul 2013, Accepted 27 Sep 2013, Published 28 Oct 2013
Full Research Paper
cc by logo

Abstract

Several novel chiral N-heterocyclic carbene and phosphine ligands were prepared from (S)-BINOL. Moreover, their ligated Au complexes were also successfully synthesized and characterized by X-ray crystal diffraction. A weak gold-π interaction between the Au atom and the aromatic ring in these gold complexes was identified. Furthermore, we confirmed the formation of a pair of diastereomeric isomers in NHC gold complexes bearing an axially chiral binaphthyl moiety derived from the hindered rotation around C–C and C–N bonds. In the asymmetric intramolecular hydroamination reaction most of these chiral Au(I) complexes showed good catalytic activities towards olefins tethered with a NHTs functional group to give the corresponding product in moderate yields and up to 29% ee.

Introduction

After the long-held assumption of the non-reactivity of gold complexes, numerous reactions catalyzed by gold complexes have emerged in the last 2 decades [1-9]. In the past few years, reports on gold-catalyzed organic transformations have increased substantially [10-29]. Homogeneous gold catalysis has proven to be a powerful tool in organic synthesis. However, chiral gold complexes [30-45], especially chiral NHC–gold complex-catalyzed asymmetric reactions [46-53] are still uncommon. Very few efficient chiral NHC–gold catalysts have been known up to the year of 2013. So far, several axially chiral NHC–gold catalysts based on binaphthyl skeleton such as 1 and 2 [46,49] have been reported with good to excellent chiral inductions in asymmetric gold catalysis (Figure 1). Encouraged by these results, we attempted to develop novel types of axially chiral NHC–gold catalysts based on the binaphthyl skeleton.

[1860-5397-9-261-1]

Figure 1: Monodentate chiral NHC gold catalysts in recent years.

Very recently, Echavarren’s group has reported a very important gold–arene interaction in dialkylbiarylphosphane gold complexes, which is very useful in gold catalysis [54]. It has been disclosed that there was a weak gold-π interaction between the gold atom and the aromatic ring in catalysts 1 [46]. On the basis of this finding, we envisaged that if an aryl group is introduced near the ligated gold atom, the gold–arene interaction may affect the catalytic efficiency in gold catalysis (Figure 1).

Results and Discussion

Synthesis of the carbene–Au(I) complexes. The synthesis of compound 9 was reported by Slaughter and co-workers (Scheme 1) [49]. The usage of (S)-BINOL as the starting material to react with trifluoromethanesulfonic anhydride in the presence of DIPEA afforded at 0 °C in dichloromethane the corresponding product (S)-2'-hydroxy-1,1'-binaphthyl-2-yl trifluoromethanesulfonate (5) in good yield. The crude product and NiCl2(dppe) (10 mol %) was dissolved in toluene under argon. To this solution was added dropwise a 1.0 M THF solution of 3,5-bis(trifluoromethyl)phenylmagnesium bromide, which afforded (S)-6 in 33% yield in two steps under reflux [55]. Then, (S)-7 was obtained by treatment of (S)-6 with Tf2O and pyridine in DCM in 99% yield. The usage of dimethylbis(diphenylphosphino)xanthene (XantPhos) as a ligand and Pd2(dba)3 as a catalyst in the presence of Cs2CO3, facilitated the reaction of (S)-7 with benzylamine in toluene to give the desired compound (S)-8 in 57% yield [49]. Reduction of (S)-8 by using Pd/C and H2 in MeOH produced the desired compound (S)-9 in 95% yield.

[1860-5397-9-261-i1]

Scheme 1: Synthesis of compound 9.

The preparation of chiral benzimidazolium salt (S)-13 is shown in Scheme 2. Based on our previous work [52], the coupling reaction between compound (S)-9 and 1-bromo-2-nitrobenzene was carried out by using Pd2(dba)3 as the catalyst in the presence of bis[2-(diphenylphosphino)phenyl] ether (DPEphos) and Cs2CO3, affording the desired compound (S)-10 in 94% yield [51]. Reduction of (S)-10 was performed under H2 (1.0 atm) atmosphere by using Pd/C as a catalyst, giving the desired compound (S)-11 in 95% yield. The subsequent cyclization of (S)-11 with triethyl orthoformate was carried out at 100 °C in the presence of p-toluenesulfonic acid, affording the desired product (S)-12 in 89% yield. The corresponding benzimidazolium salt (S)-13 was obtained in quantitative yield upon treating the benzimidazole ring of (S)-12 with methyl iodide in acetonitrile under reflux (Scheme 2). Moreover, treatment of the benzimidazole ring of (S)-12 by using benzyl bromide upon heating in dioxane could produce the corresponding benzimidazolium salt (S)-14 also in quantitative yield (Scheme 3).

[1860-5397-9-261-i2]

Scheme 2: Synthesis of N-heterocyclic carbene precursor.

[1860-5397-9-261-i3]

Scheme 3: Synthesis of benzimidazolium salt (S)-14.

With these NHC precursor salts (S)-13 and (S)-14 in hand, their coordination pattern with Au was examined. Benzimidazolium salts (S)-13 and (S)-14 were treated with AuCl·S(Me)2 in acetonitrile in the presence of NaOAc under reflux, giving the corresponding Au complexes (S)-15 [two diastereomers: (S)-15a in 46% yield and (S)-15b in 37% yield] and (S)-16 in 75% total yield [the two diastereomers: (S)-16a and (S)-16b can not be separated by silica gel column chromatography] as a white solid after purification with silica gel column chromatography (Scheme 4). The ratio of (S)-16a and (S)-16b was identified as 1:2 on the basis of 1H NMR spectroscopic data. After recrystallization from the mixed solvent of DCM and pentane, the single crystals of diastereomers (S)-15a and (S)-15b were obtained and their structures were confirmed by the X-ray crystal structure diffraction (Figure 2 and Figure 3). The distance between the center of the aromatic ring in one naphthyl moiety (C20–C25) and the Au atom in (S)-15a was only 3.7 Å (Figure 2). The distance from the Au atom to the center of the bis(trifluoromethyl)phenyl ring (C29–C34) in (S)-15b was 3.5 Å (Figure 3). Thus, their X-ray crystal structures clearly revealed the presence of a weak gold–π interaction between the Au atom and the aromatic rings in these gold complexes. Because of the gold–π interaction, the C–N bond could not rotate freely, giving two diastereomeric rotamers (S)-15a and (S)-15b. Slaughter and co-workers have also found two rotamers in gold complexes 1 caused by the handicap of C–N bond rotation on the basis of X-ray diffraction and named them as “out” rotamer and “in” rotamer [49] (Scheme 5). Their energy barrier has been also disclosed by DFT calculations.

[1860-5397-9-261-i4]

Scheme 4: Synthesis of carbene Au complexes.

[1860-5397-9-261-2]

Figure 2: The crystal data of gold complex (S)-15a was deposited in the CCDC with the number 883917. Empirical formula: C36H22AuF6IN2; formula weight: 920.42; crystal color, colorless; crystal dimensions: 0.321 × 0.212 × 0.143 mm; crystal system: orthorhombic; lattice parameters: a = 9.6909(5) Å, b = 18.5814(9) Å, c = 36.0427(18) Å, α = 90o, β = 90o, γ = 90o, V = 6490.2(6) Å3; space group: P2(1)2(1)2(1); Z = 8; Dcalc = 1.884 g/cm3; F000 = 3504; final R indices [I > 2sigma(I)]: R1 = 0.0421; wR2 = 0.0793.

[1860-5397-9-261-3]

Figure 3: The crystal data of gold complex (S)-15b was deposited in the CCDC with the number 883916. Empirical formula: C36H22AuF6IN2; formula weight: 920.42; crystal color, colorless; crystal dimensions: 0.265 × 0.211 × 0.147 mm; crystal system: orthorhombic; lattice parameters: a = 7.6103(5) Å, b = 12.6408(8) Å, c = 34.029(2) Å, α = 90o, β = 90o, γ = 90o, V = 3273.6(4) Å3; space group: P2(1)2(1)2(1); Z = 4; Dcalc = 1.868 g/cm3; F000 = 1752; final R indices [I > 2sigma(I)]: R1 = 0.0482; wR2 = 0.1072.

[1860-5397-9-261-i5]

Scheme 5: Rotamers of 1a and 1b by DFT calculation reported by Slaughter’s group.

Synthesis of the P–Au(I) complexes. The synthesis of the Au complexes (S)-18 and (S)-22 is shown in Scheme 6. Compounds (S)-17 and (S)-19 were prepared according to published literature procedures [56]. Compound (S)-17 was treated with AuCl·S(Me)2 in acetonitrile at room temperature to give the corresponding Au complex (S)-18 in 88% yield as a white solid after purification with silica gel column chromatography. The structure of (S)-18 was confirmed by the X-ray crystal structure diffraction (Figure 4). The distance from the Au atom to the center of the aromatic ring (C11, C12 and C17–C20) in one naphthyl moiety was 3.3 Å.

[1860-5397-9-261-i6]

Scheme 6: The synthesis of P–Au complexes.

[1860-5397-9-261-4]

Figure 4: The crystal data of gold complex (S)-18 was deposited in the CCDC with the number 920617. Empirical formula: C32H23AuClOP; formula weight: 686.89; crystal color, colorless; crystal dimensions: 0.212 × 0.139 × 0.101 mm; crystal system: orthorhombic; lattice parameters: a = 9.0411(7) Å, b = 13.4833(10) Å, c = 21.9878(16) Å, α = 90o, β = 90o, γ = 90o, V = 2680.4(3) Å3; space group: P2(1)2(1)2(1); Z = 4; Dcalc = 1.702 g/cm3; F000 = 1336; final R indices [I > 2sigma(I)]: R1 = 0.0378; wR2 = 0.0680.

The compound (S)-19 and NiCl2(dppe) (10 mol %) were dissolved in toluene under argon. To this solution was added dropwise a 1.0 M THF solution of phenylmagnesium bromide and the desired compound (S)-20 was afforded in 21% yield. Then, the obtained compound (S)-20 was treated with SiHCl3 in the presence of triethylamine in toluene at 120 °C, giving (S)-diphenyl(2'-phenyl-1,1'-binaphthyl-2-yl)phosphine (21) in 81% yield. The corresponding gold complex (S)-22 was obtained in 91% yield upon treating (S)-21 with the same method as the gold complex (S)-18. The structure of (S)-22 was confirmed by X-ray crystal structure diffraction (Figure 5). The crystal structure of (S)-22 (Figure 5) revealed that the distance from the Au atom to the center of the phenyl ring (C21–C26) was 4.5 Å. During the process of the preparation of (S)-21, we found a small amount of naphtho[1,2-g]chrysene (23), presumably derived from a cross coupling of compound (S)-19 with PhMgBr. Its structure was also confirmed by the X-ray crystal structure diffraction (Figure SI-1 in Supporting Information File 1).

[1860-5397-9-261-5]

Figure 5: The crystal data of gold complex (S)-22 was deposited in the CCDC with the number 928664. Empirical formula: C38H27AuClP; formula weight: 746.98; crystal color, habit: yellow; crystal system: monoclinic; crystal size: 0.21 × 0.19 × 0.11; lattice parameters: a = 10.1476(9) Å, b = 15.7426(14) Å, c = 10.5615(9) Å, α = 90o, β = 115.257(2)o, γ = 90o, V = 1525.9(2) Å3; space group: P2(1); Z = 4; Dcalc = 1.626 g/cm3; F000 = 732; final R indices [I > 2sigma(I)]: R1 = 0.0231; wR2 = 0.0538.

The catalytic activities of these gold complexes were examined by the gold-catalyzed asymmetric intramolecular hydroamination of olefin 24 tethered with a NHTs functional group.

Intramolecular hydroamination reaction catalyzed by Au(I) complexes. We synthesized a variety of Au complexes both neutral and cationic and subsequently used these complexes as catalysts in a variety of reactions. High enantioselectivities were achieved in the asymmetric intramolecular hydroamination of allenes by using a variety of chiral phosphine–Au(I) complexes [57-63]. On the other hand, the intramolecular hydroamination of olefins is a more important reaction in organic synthesis and has been widely reported [64-68]. Recently, the enantioselective intramolecular hydroamination of olefins has also been significantly improved by using various transition metal complexes or other metal complexes [69-77]. However, to the best of our knowledge, the enantioselective intramolecular hydroamination of olefins catalyzed by gold complexes has not been reported yet. We therefore applied our Au complexes to the asymmetric catalysis of the intramolecular hydroamination of olefin 24 tethered with a NHTs functional group.

Treatment of olefin 24 with the axially chiral gold complex (S)-22 and AgOTf (5 mol %) in toluene at 85 oC for 36 h afforded pyrrolidine derivative 25 in 46% yield and 17% ee. While using AgSbF6 or AgNTf2 as additives, only trace amounts of 25 were formed. Further screening of silver salts revealed that AgOTs showed the best catalytic activity in this reaction, giving 25 in 72% yield and 27% ee (Table 1, entries 1–6). The usage of other solvents such as DCE, CH3CN and THF, decreased significantly the yield (Table 1, entries 7–9). The employment of other axially chiral Au complexes in this reaction led to similar results, affording 25 in 42–65% yields and 7–2–7% ee (Table 1, entries 10–13). The control experiment indicated that no reaction occurred in the absence of a Au catalyst (Table 1, entry 14).

Table 1: Asymmetric intramolecular hydroamination catalyzed by Au complexes.

[Graphic 1]
entrya Au cat. Ag salt solvent yield (%)b ee (%)c
1 22 AgOTf toluene 46 17
2 22 AgSbF6 toluene trace d
3 22 CF3COOAg toluene 69 11
4 22 AgOTs toluene 72 27
5 22 AgBF4 toluene 15 10
6 22 AgNTf2 toluene 48 0
7 22 AgOTs CH3CN 12 27
8 22 AgOTs DCE 11 29
9 22 AgOTs THF N.R. d
10 18 AgOTs toluene 58 24
11 16 AgOTs toluene 65 27
12 15a AgOTs toluene 42 7
13 15b AgOTs toluene 51 10
14 none AgOTs toluene N.R. d

aThe reaction was carried out on a 0.1 mmol scale in solvents (1.0 mL). bIsolated yield. cMeasured by chira HPLC. dNot determined.

Conclusion

Axially chiral Au(I) complexes exhibiting a binaphthalene scaffold with NHC or phosphine gold complexes on one side and an arene moiety on another side were prepared starting from axially chiral BINOL. A weak gold–π interaction between the Au atom and the aromatic ring in these gold complexes was identified. These axially chiral Au(I) complexes showed moderate catalytic activities along with low chiral inductions in the asymmetric intramolecular hydroamination reaction of olefin 24 tethered with a functional group of NHT.

Experimental

Synthesis of NHC–Au(I) complexes (S)-15a and (S)-15b

The compound (S)-13 (145 mg, 0.2 mmol) and AuCl·S(Me)2 (59 mg, 0.2 mmol), NaOAc (33 mg, 0.4 mmol) were heated under reflux in CH3CN (2 mL) overnight. The volatiles were then removed under reduced pressure and the residue was purified by a silica gel flash column chromatography to afford gold-complexes (S)-15a (84 mg) in 46% yield and (S)-15b (68 mg) in 37% yield. A single crystal grown from complex (S)-15a or (S)-15b in a saturated solution of CH2Cl2/pentane was suitable for X-ray crystal analysis. (S)-15a: white solid; [α]D20 −64.7 (c 0.10, CH2Cl2); 1H NMR (400 MHz, CDCl3, TMS) δ 8.17–8.13 (m, 2H, ArH), 7.94 (d, J = 8.8 Hz, 1H, ArH), 7.90–7.88 (m, 1H, ArH), 7.74–7.70 (m, 1H, ArH), 7.66–7.59 (m, 3H, ArH), 7.56–7.50 (m, 2H, ArH), 7.42 (d, J = 8.4 Hz, 1H, ArH), 7.34–7.28 (m, 4H, ArH), 7.06 (s, 2H, ArH), 6.86–6.82 (m, 1H, ArH), 5.60 (d, J = 8.4 Hz, 1H, ArH), 3.78 (s, 3H, CH3); 19F NMR (376 MHz, CDCl3, CFCl3) δ −63.096; 13C NMR (100 MHz, CDCl3) δ 141.5, 140.8, 134.9, 134.5, 133.4, 132.9, 132.6, 131.3, 131.0, 130.9, 130.7, 129.9, 129.2, 129.1, 129.0, 128.5, 128.41, 128.37, 127.9, 127.6, 127.3, 126.9, 126.8, 126.4, 123.7, 123.4, 121.0, 120.6, 113.2, 111.4, 34.8; IR (CH2Cl2) ν: 3059, 2926, 1594, 1385, 1346, 1277, 1182, 1133, 897, 820, 745, 713 cm−1; HRMS–ESI: [M + NH4]+ calcd for C36H26AuF6IN3, 938.0736; found, 938.0728. (S)-15b: white solid; [α]D20 −66.1 (c 1.45, CH2Cl2); 1H NMR (400 MHz, CDCl3, TMS) δ 8.17 (d, J = 8.4 Hz, 1H, ArH), 8.13 (d, J = 8.0 Hz, 1H, ArH), 7.85 (d, J = 8.0 Hz, 1H, ArH), 7.79–7.69 (m, 4H, ArH), 7.63 (d, J = 8.0 Hz, 1H, ArH), 7.59–7.54 (m, 3H, ArH), 7.50–7.46 (m, 1H, ArH), 7.23 (d, J = 8.8 Hz, 2H, ArH), 7.17 (s, 2H, ArH), 7.08–7.04 (m, 1H, ArH), 6.47–6.42 (m, 2H, ArH), 3.94 (s, 3H, CH3); 19F NMR (376 MHz, CDCl3, CFCl3) δ −62.451; 13C NMR (100 MHz, CDCl3) δ 134.6, 134.5, 134.1, 134.0, 133.6, 131.4, 131.34, 131.27, 129.1, 129.0, 128.8, 128.7, 128.66, 128.58, 128.5, 128.3, 128.2, 127.8, 126.9, 126.5, 124.1, 123.4, 118.6, 31.9; IR (CH2Cl2) ν: 2923, 2851, 1726, 1465, 1387, 1277, 1181, 1131, 894, 823, 743, 712, 681 cm−1; HRMS–ESI: [M + NH4]+ calcd for C36H26AuF6IN3, 938.0736; found, 938.0725.

Synthesis of chiral P–Au(I) complexes (S)-18 and (S)-22

The compound (S)-17 (454 mg, 1.0 mmol) and AuCl·S(Me)2 (294 mg, 1.0 mmol) were stirred in CH3CN (10 mL) overnight. The volatiles were then removed under reduced pressure and the residue was purified by silica gel flash column chromatography to afford gold-complex (S)-18 (603 mg) in 88% yield. A single crystal grown from complex (S)-18 in a saturated solution of CH2Cl2/pentane was suitable for X-ray crystal analysis. (S)-18: white solid; [α]D20 −35.4 (c 0.20, CH2Cl2); 1H NMR (400 MHz, CDCl3, TMS) δ 7.99–7.93 (m, 3H, ArH), 7.80 (d, J = 8.4 Hz, 1H, ArH), 7.60–7.56 (m, 1H, ArH), 7.50–7.45 (m, 3H, ArH), 7.42–7.17 (m, 12H, ArH), 6.86–6.82 (m, 1H, ArH), 6.45 (d, J = 8.4 Hz, 1H, ArH), 5.17 (br, 1H, OH); 31P NMR (162 MHz, CDCl3, 85% H3PO4) δ 26.116; 13C NMR (100 MHz, CDCl3) δ 141.8, 136.5, 134.4, 133.7, 133.24, 133.22, 133.1, 132.39, 132.35, 130.5, 130.2, 129.8, 129.0, 128.9, 128.6, 128.4, 127.6, 127.3, 127.2, 127.1, 127.0, 126.6, 124.2, 123.7, 123.0, 112.6, 110.4; IR (CH2Cl2) ν: 3359, 3055, 2924, 1623, 1513, 1435, 1269, 1098, 972, 937, 814, 743, 692 cm−1; HRMS–ESI: [M + NH4]+: calcd for C32H27AuClNOP, 704.1179; found, 704.1170.

Gold complex (S)-22 has been prepared by the same reaction procedure as gold complex (S)-18 in 91% yield. A single crystal grown from complex (S)-22 in a saturated solution of CH2Cl2/pentane was suitable for X-ray crystal analysis. white solid; [α]D20 −80.7 (c 0.95, CH2Cl2); 1H NMR (400 MHz, CDCl3, TMS) δ 8.27 (d, J = 8.8 Hz, 1H, ArH), 8.05 (d, J = 8.4 Hz, 1H, ArH), 7.90 (d, J = 8.0 Hz, 1H, ArH), 7.84 (d, J = 8.4 Hz, 1H, ArH), 7.67 (d, J = 8.4 Hz, 1H, ArH), 7.62–7.57 (m, 1H, ArH), 7.47 (t, J = 7.6 Hz, 1H, ArH), 7.40–7.35 (m, 4H, ArH), 7.28–7.24 (m, 2H, ArH), 7.22–7.12 (m, 6H, ArH), 6.97 (d, J = 7.6 Hz, 2H, ArH), 6.92 (t, J = 7.2 Hz, 2H, ArH), 6.88 (d, J = 7.6 Hz, 1H, ArH), 6.84 (d, J = 8.8 Hz, 1H, ArH), 6.77 (t, J = 7.6 Hz, 2H, ArH); 31P NMR (162 MHz, CDCl3, 85% H3PO4) δ 22.898, 22.825, 22.751, 22.697; 13C NMR (100 MHz, CDCl3) δ 151.4, 134.6, 134.4, 134.1, 133.9, 133.7, 133.5, 133.2, 133.1, 131.5, 131.44, 131.37, 131.35, 131.25, 129.9, 129.3, 129.04, 128.98, 128.92, 128.89, 128.87, 128.85, 128.84, 128.7, 128.64, 128.59, 128.51, 128.4, 128.3, 128.2, 127.8, 127.5, 126.81, 126.80, 126.6, 126.5, 126.47, 126.1, 126.0, 124.1, 123.4; IR (CH2Cl2) ν: 3054, 1589, 1494, 1480, 1436, 1306, 1265, 1098, 1027, 819, 763, 744, 698 cm−1; HRMS–ESI: [M + NH4]+ calcd for C38H31AuClNP, 764.1543; found, 764.1532.

General procedure for the intramolecular hydroamination reaction catalyzed by Au(I) complexes

In a similar way as described in reference [51], a mixture of Au catalyst (5 mol %) and AgX (5 mol %) in solvent (0.5 mL) was stirred at room temperature for 5 min under argon, then a solution of compound 24 (39.1 mg, 0.10 mmol) in solvent (0.5 mL) was added into the resulting solution. The resulting suspension was stirred at 85 °C for 36 h. Column chromatography of the reaction mixture gave the desired product. The enantiomeric purity of the product was determined by chiral HPLC analysis. Compound 25: 1H NMR (400 MHz, CDCl3, TMS) δ 7.61 (d, J = 8.0 Hz, 2H, ArH), 7.27–7.09 (m, 12H, ArH), 4.17 (d, J = 10.4 Hz, 1H, CH2), 3.94 (dd, J1 = 10.4 Hz, J2 = 0.4 Hz, 1H, CH2), 3.82–3.74 (m, 1H, CH), 2.78 (ddd, J1 = 12.4 Hz, J2 = 7.2 Hz, J3 = 0.4 Hz, 1H, CH2), 2.38 (s, 3H, CH3), 2.26 (dd, J1 = 12.4 Hz, J2 = 7.2 Hz, 1H, CH2), 1.25 (d, J = 6.4 Hz, 3H, CH3); 13C NMR (100 MHz, CDCl3) δ 145.6, 144.8, 142.9, 135.3, 129.5, 128.43, 128.42, 127.1, 126.6, 126.42, 126.39, 126.2, 58.3, 55.4, 52.2, 45.9, 22.1, 21.4; [α]D20 20.1 (c 1.2, CH2Cl2), for 29% ee; Chiralcel PA-2, hexane/iPrOH = 60/40, 0.5 mL/min, 214 nm, tmajor = 45.07 min, tminor = 27.49 min.

Supporting Information

Supporting Information File 1: Experimental procedures and characterization date of compounds.
Format: PDF Size: 1.4 MB Download
Supporting Information File 2: Chemical information file of compound (S)-15a.
Format: CIF Size: 44.5 KB Download
Supporting Information File 3: Chemical information file of compound (S)-15b.
Format: CIF Size: 24.7 KB Download
Supporting Information File 4: Chemical information file of compound (S)-18.
Format: CIF Size: 20.3 KB Download
Supporting Information File 5: Chemical information file of compound (S)-21.
Format: CIF Size: 16.7 KB Download
Supporting Information File 6: Chemical information file of compound (S)-23.
Format: CIF Size: 22.2 KB Download

Acknowledgements

Financial support from the Shanghai Municipal Committee of Science and Technology (08dj1400100-2), the Fundamental Research Funds for the Central Universities, the National Basic Research Program of China (973)-2010CB833302, the Fundamental Research Funds for the Central Universities, and the National Natural Science Foundation of China (21072206, 21121062, 21121062, 20902019, 20472096, 20872162, 20672127, 20732008, 20821002, and 20702013) are gratefully acknowledged.

References

  1. Corma, A.; Leyva-Pérez, A.; Sabater, M. J. Chem. Rev. 2011, 111, 1657–1712. doi:10.1021/cr100414u
    Return to citation in text: [1]
  2. Li, Z.; Brouwer, C.; He, C. Chem. Rev. 2008, 108, 3239–3265. doi:10.1021/cr068434l
    Return to citation in text: [1]
  3. Krause, N.; Winter, C. Chem. Rev. 2011, 111, 1994–2009. doi:10.1021/cr1004088
    Return to citation in text: [1]
  4. Nolan, S. P. Acc. Chem. Res. 2011, 44, 91–100. doi:10.1021/ar1000764
    Return to citation in text: [1]
  5. Gaillard, S.; Cazin, C. S. J.; Nolan, S. P. Acc. Chem. Res. 2012, 45, 778–787. doi:10.1021/ar200188f
    Return to citation in text: [1]
  6. Rudolph, M.; Hashmi, A. S. K. Chem. Soc. Rev. 2012, 41, 2448–2462. doi:10.1039/C1CS15279C
    Return to citation in text: [1]
  7. Wegner, H. A.; Auzias, M. Angew. Chem., Int. Ed. 2011, 50, 8236–8247. doi:10.1002/anie.201101603
    Return to citation in text: [1]
  8. Huang, H.; Zhou, Y.; Liu, H. Beilstein J. Org. Chem. 2011, 7, 897–936. doi:10.3762/bjoc.7.103
    Return to citation in text: [1]
  9. Bandini, M. Chem. Soc. Rev. 2011, 40, 1358–1367. doi:10.1039/C0CS00041H
    Return to citation in text: [1]
  10. Cheon, C. H.; Kanno, O.; Toste, F. D. J. Am. Chem. Soc. 2011, 133, 13248–13251. doi:10.1021/ja204331w
    Return to citation in text: [1]
  11. Sethofer, S. G.; Mayer, T.; Toste, F. D. J. Am. Chem. Soc. 2010, 132, 8276–8277. doi:10.1021/ja103544p
    Return to citation in text: [1]
  12. Rudolph, M. Applications of Gold-Catalyzed Reactions to Natural Product Synthesis. In Modern Gold Catalyzed Synthesis; Hashmi, A. S. K.; Toste, F. D., Eds.; Wiley-VCH: Weinheim, Germany, 2012; pp 331–362.
    Return to citation in text: [1]
  13. Hubbert, C.; Hasmi, A. S. K. Gold-Catalyzed Aldol and Related Reactions. In Modern Gold Catalyzed Synthesis; Hashmi, A. S. K.; Toste, F. D., Eds.; Wiley-VCH: Weinheim, Germany, 2012; pp 237–261.
    Return to citation in text: [1]
  14. Shapiro, N. D.; Toste, F. D. Synlett 2010, 675–691. doi:10.1055/s-0029-1219369
    Return to citation in text: [1]
  15. Melhado, A. D.; Brenzovich, W. E., Jr.; Lackner, A. D.; Toste, F. D. J. Am. Chem. Soc. 2010, 132, 8885–8887. doi:10.1021/ja1034123
    Return to citation in text: [1]
  16. Benitez, D.; Tkatchouk, E.; Gonzalez, A. Z.; Goddard, W. A., III; Toste, F. D. Org. Lett. 2009, 11, 4798–4801. doi:10.1021/ol9018002
    Return to citation in text: [1]
  17. Shapiro, N. D.; Shi, Y.; Toste, F. D. J. Am. Chem. Soc. 2009, 131, 11654–11655. doi:10.1021/ja903863b
    Return to citation in text: [1]
  18. Tkatchouk, E.; Mankad, N. P.; Benitez, D.; Goddard, W. A., III; Toste, F. D. J. Am. Chem. Soc. 2011, 133, 14293–14300. doi:10.1021/ja2012627
    Return to citation in text: [1]
  19. Mauleón, P.; Zeldin, R. M.; González, A. Z.; Toste, F. D. J. Am. Chem. Soc. 2009, 131, 6348–6349. doi:10.1021/ja901649s
    Return to citation in text: [1]
  20. Hashmi, A. S. K.; Hengst, T.; Lothschütz, C.; Rominger, F. Adv. Synth. Catal. 2010, 352, 1315–1337. doi:10.1002/adsc.201000126
    Return to citation in text: [1]
  21. Kusama, H.; Karibe, Y.; Onizawa, Y.; Iwasawa, N. Angew. Chem., Int. Ed. 2010, 49, 4269–4272. doi:10.1002/anie.201001061
    Return to citation in text: [1]
  22. Teng, T.-M.; Liu, R.-S. J. Am. Chem. Soc. 2010, 132, 9298–9300. doi:10.1021/ja1043837
    Return to citation in text: [1]
  23. Mukherjee, A.; Dateer, R. B.; Chaudhuri, R.; Bhunia, S.; Karad, S. N.; Liu, R.-S. J. Am. Chem. Soc. 2011, 133, 15372–15375. doi:10.1021/ja208150d
    Return to citation in text: [1]
  24. Jurberg, I. D.; Odabachian, Y.; Gagosz, F. J. Am. Chem. Soc. 2010, 132, 3543–3552. doi:10.1021/ja9100134
    Return to citation in text: [1]
  25. Bolte, B.; Gagosz, F. J. Am. Chem. Soc. 2011, 133, 7696–7699. doi:10.1021/ja202336p
    Return to citation in text: [1]
  26. Ye, L.; Wang, Y.; Aue, D. H.; Zhang, L. J. Am. Chem. Soc. 2012, 134, 31–34. doi:10.1021/ja2091992
    Return to citation in text: [1]
  27. Hashmi, A. S. K.; Braun, I.; Nösel, P.; Schädlich, J.; Wieteck, M.; Rudolph, M.; Rominger, F. Angew. Chem., Int. Ed. 2012, 51, 4456–4460. doi:10.1002/anie.201109183
    Return to citation in text: [1]
  28. Barluenga, J.; Sigüeiro, R.; Vicente, R.; Ballesteros, A.; Tomás, M.; Rodríguez, M. A. Angew. Chem., Int. Ed. 2012, 51, 10377–10381. doi:10.1002/anie.201205051
    Return to citation in text: [1]
  29. Mukherjee, P.; Widenhoefer, R. A. Chem.–Eur. J. 2013, 19, 3437–3444. doi:10.1002/chem.201203987
    Return to citation in text: [1]
  30. Melhado, A. D.; Amarante, G. W.; Wang, Z. J.; Luparia, M.; Toste, F. D. J. Am. Chem. Soc. 2011, 133, 3517–3527. doi:10.1021/ja1095045
    Return to citation in text: [1]
  31. Liu, B.; Li, K.-N.; Luo, S.-W.; Huang, J.-Z.; Pang, H.; Gong, L.-Z. J. Am. Chem. Soc. 2013, 135, 3323–3326. doi:10.1021/ja3110472
    Return to citation in text: [1]
  32. Liu, X.-Y.; Che, C.-M. Org. Lett. 2009, 11, 4204–4207. doi:10.1021/ol901443b
    Return to citation in text: [1]
  33. Alonso, I.; Trillo, B.; López, F.; Montserrat, S.; Ujaque, G.; Castedo, L.; Lledós, A.; Mascareñas, J. L. J. Am. Chem. Soc. 2009, 131, 13020–13030. doi:10.1021/ja905415r
    Return to citation in text: [1]
  34. Briones, J. F.; Davies, H. M. L. J. Am. Chem. Soc. 2012, 134, 11916–11919. doi:10.1021/ja304506g
    Return to citation in text: [1]
  35. González, A. Z.; Toste, F. D. Org. Lett. 2010, 12, 200–203. doi:10.1021/ol902622b
    Return to citation in text: [1]
  36. González, A. Z.; Benitez, D.; Tkatchouk, E.; Goddard, W. A., III; Toste, F. D. J. Am. Chem. Soc. 2011, 133, 5500–5507. doi:10.1021/ja200084a
    Return to citation in text: [1]
  37. Rodríguez, L.-I.; Roth, T.; Fillol, J. L.; Wadepohl, H.; Gade, L. H. Chem.–Eur. J. 2012, 18, 3721–3728. doi:10.1002/chem.201103140
    Return to citation in text: [1]
  38. Qian, D.; Zhang, J. Chem.–Eur. J. 2013, 19, 6984–6988. doi:10.1002/chem.201301208
    Return to citation in text: [1]
  39. Ye, L.; He, W.; Zhang, L. Angew. Chem., Int. Ed. 2011, 50, 3236–3239. doi:10.1002/anie.201007624
    Return to citation in text: [1]
  40. Suárez-Pantiga, S.; Hernández-Díaz, C.; Rubio, E.; González, J. M. Angew. Chem., Int. Ed. 2012, 51, 11552–11555. doi:10.1002/anie.201206461
    Return to citation in text: [1]
  41. Liu, F.; Qian, D.; Li, L.; Zhao, X.; Zhang, J. Angew. Chem., Int. Ed. 2010, 49, 6669–6672. doi:10.1002/anie.201003136
    Return to citation in text: [1]
  42. Bandini, M.; Eichholzer, A. Angew. Chem., Int. Ed. 2009, 48, 9533–9537. doi:10.1002/anie.200904388
    Return to citation in text: [1]
  43. Faustino, H.; Alonso, I.; Mascareñas, J. L.; López, F. Angew. Chem., Int. Ed. 2013, 52, 6526–6530. doi:10.1002/anie.201302713
    Return to citation in text: [1]
  44. Butler, K. L.; Tragni, M.; Widenhoefer, R. A. Angew. Chem., Int. Ed. 2012, 51, 5175–5178. doi:10.1002/anie.201201584
    Return to citation in text: [1]
  45. Alonso, I.; Faustino, H.; López, F.; Mascareñas, J. L. Angew. Chem., Int. Ed. 2011, 50, 11496–11500. doi:10.1002/anie.201105815
    Return to citation in text: [1]
  46. Wang, Y.-M.; Kuzniewski, C. N.; Rauniyar, V.; Hoong, C.; Toste, F. D. J. Am. Chem. Soc. 2011, 133, 12972–12975. doi:10.1021/ja205068j
    Return to citation in text: [1] [2] [3]
  47. Alcarazo, M.; Stork, T.; Anoop, A.; Thiel, W.; Fürstner, A. Angew. Chem., Int. Ed. 2010, 49, 2542–2546. doi:10.1002/anie.200907194
    Return to citation in text: [1]
  48. Francos, J.; Grande-Carmona, F.; Faustino, H.; Iglesias-Sigüenza, J.; Díez, E.; Alonso, I.; Fernández, R.; Lassaletta, J. M.; López, F.; Mascareñas, J. L. J. Am. Chem. Soc. 2012, 134, 14322–14325. doi:10.1021/ja3065446
    Return to citation in text: [1]
  49. Handa, S.; Slaughter, L. M. Angew. Chem., Int. Ed. 2012, 51, 2912–2915. doi:10.1002/anie.201107789
    Return to citation in text: [1] [2] [3] [4] [5]
  50. Yang, J.; Zhang, R.; Wang, W.; Zhang, Z.; Shi, M. Tetrahedron: Asymmetry 2011, 22, 2029–2038. doi:10.1016/j.tetasy.2011.12.004
    Return to citation in text: [1]
  51. Wang, W.; Yang, J.; Wang, F.; Shi, M. Organometallics 2011, 30, 3859–3869. doi:10.1021/om2004404
    Return to citation in text: [1] [2] [3]
  52. Liu, L.; Wang, F.; Wang, W.; Zhao, M.; Shi, M. Beilstein J. Org. Chem. 2011, 7, 555–564. doi:10.3762/bjoc.7.64
    Return to citation in text: [1] [2]
  53. Wang, F.; Li, S.; Qu, M.; Zhao, M.; Liu, L.; Shi, M. Beilstein J. Org. Chem. 2012, 8, 726–731. doi:10.3762/bjoc.8.81
    Return to citation in text: [1]
  54. Pérez-Galán, P.; Delpont, N.; Herrero-Gómez, E.; Maseras, F.; Echavarren, A. M. Chem.–Eur. J. 2010, 16, 5324–5332. doi:10.1002/chem.200903507
    Return to citation in text: [1]
  55. Ooi, T.; Ohmatsu, K.; Maruoka, K. J. Am. Chem. Soc. 2007, 129, 2410–2411. doi:10.1021/ja063051q
    Return to citation in text: [1]
  56. Jiang, Y.-Q.; Shi, Y.-L.; Shi, M. J. Am. Chem. Soc. 2008, 130, 7202–7203. doi:10.1021/ja802422d
    Return to citation in text: [1]
  57. Teller, H.; Corbet, M.; Mantilli, L.; Gopakumar, G.; Goddard, R.; Thiel, W.; Fürstner, A. J. Am. Chem. Soc. 2012, 134, 15331–15342. doi:10.1021/ja303641p
    Return to citation in text: [1]
  58. Kim, J. H.; Park, S.-W.; Park, S. R.; Lee, S.; Kang, E. J. Chem.–Asian J. 2011, 6, 1982–1986. doi:10.1002/asia.201100135
    Return to citation in text: [1]
  59. Li, H.; Lee, S. D.; Widenhoefer, R. A. J. Organomet. Chem. 2011, 696, 316–320. doi:10.1016/j.jorganchem.2010.09.045
    Return to citation in text: [1]
  60. Bartolome, C.; García-Cuadrado, D.; Ramiro, Z.; Espinet, P. Organometallics 2010, 29, 3589–3592. doi:10.1021/om100507r
    Return to citation in text: [1]
  61. Zhang, Z.; Bender, C. F.; Widenhoefer, R. A. J. Am. Chem. Soc. 2007, 129, 14148–14149. doi:10.1021/ja0760731
    Return to citation in text: [1]
  62. Zhang, Z.; Bender, C. F.; Widenhoefer, R. A. Org. Lett. 2007, 9, 2887–2889. doi:10.1021/ol071108n
    Return to citation in text: [1]
  63. LaLonde, R. L.; Sherry, B. D.; Kang, E. J.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 2452–2453. doi:10.1021/ja068819l
    Return to citation in text: [1]
  64. Kitahara, H.; Sakurai, H. J. Organomet. Chem. 2011, 442–449. doi:10.1016/j.jorganchem.2010.08.038
    Return to citation in text: [1]
  65. Zhang, R.; Xu, Q.; Mei, L.-y.; Li, S.-k.; Shi, M. Tetrahedron 2012, 68, 3172–3178. doi:10.1016/j.tet.2012.02.060
    Return to citation in text: [1]
  66. Li, Z.; Zhang, J.; Brouwer, C.; Yang, C.-G.; Reich, N. W.; He, C. Org. Lett. 2006, 8, 4175–4178. doi:10.1021/ol0610035
    Return to citation in text: [1]
  67. Zhang, J.; Yang, C.-G.; He, C. J. Am. Chem. Soc. 2006, 128, 1798–1799. doi:10.1021/ja053864z
    Return to citation in text: [1]
  68. Kitahara, H.; Kamiya, I.; Sakurai, H. Chem. Lett. 2009, 38, 908–909. doi:10.1246/cl.2009.908
    Return to citation in text: [1]
  69. Reznichenko, A. L.; Hultzsch, K. C. Organometallics 2013, 32, 1394–1408. doi:10.1021/om3010614
    Return to citation in text: [1]
  70. Turnpenny, B. W.; Hyman, K. L.; Chemler, S. R. Organometallics 2012, 31, 7819–7822. doi:10.1021/om300744m
    Return to citation in text: [1]
  71. Chapurina, Y.; Ibrahim, H.; Guillot, R.; Kolodziej, E.; Collin, J.; Trifonov, A.; Schulz, E.; Hannedouche, J. J. Org. Chem. 2011, 76, 10163–10172. doi:10.1021/jo202009q
    Return to citation in text: [1]
  72. Manna, K.; Xu, S.; Sadow, A. D. Angew. Chem., Int. Ed. 2011, 50, 1865–1868. doi:10.1002/anie.201006163
    Return to citation in text: [1]
  73. Ayinla, R. O.; Gibson, T.; Schafer, L. L. J. Organomet. Chem. 2010, 696, 50–60. doi:10.1016/j.jorganchem.2010.07.023
    Return to citation in text: [1]
  74. Hannedouche, J.; Collin, J.; Trifonov, A.; Schulz, E. J. Organomet. Chem. 2011, 696, 255–262. doi:10.1016/j.jorganchem.2010.09.013
    Return to citation in text: [1]
  75. Shen, X.; Buchwald, S. L. Angew. Chem., Int. Ed. 2010, 49, 564–567. doi:10.1002/anie.200905402
    Return to citation in text: [1]
  76. Horrillo-Martínez, P.; Hultzsch, K. C. Tetrahedron Lett. 2009, 50, 2054–2056. doi:10.1016/j.tetlet.2009.02.069
    Return to citation in text: [1]
  77. Zi, G. J. Organomet. Chem. 2010, 696, 68–75. doi:10.1016/j.jorganchem.2010.07.034
    Return to citation in text: [1]
Other Beilstein-Institut Open Science Activities