Recent advances in transition-metal-catalyzed intermolecular carbomagnesiation and carbozincation

Kei Murakami and Hideki Yorimitsu
Beilstein J. Org. Chem. 2013, 9, 278–302. https://doi.org/10.3762/bjoc.9.34

Cite the Following Article

Recent advances in transition-metal-catalyzed intermolecular carbomagnesiation and carbozincation
Kei Murakami and Hideki Yorimitsu
Beilstein J. Org. Chem. 2013, 9, 278–302. https://doi.org/10.3762/bjoc.9.34

How to Cite

Murakami, K.; Yorimitsu, H. Beilstein J. Org. Chem. 2013, 9, 278–302. doi:10.3762/bjoc.9.34

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Sun, C.; Qi, T.; Rahman, F.-U.; Hayashi, T.; Ming, J. Ligand-controlled regiodivergent arylation of aryl(alkyl)alkynes and asymmetric synthesis of axially chiral 9-alkylidene-9,10-dihydroanthracenes. Nature communications 2024, 15, 9307. doi:10.1038/s41467-024-53767-4
  • Gabdullin, A. M.; Kadikova, R. N.; Mozgovoj, O. S.; Ramazanov, I. R. Reactions of substituted 1-alkynylphosphines with Et2Zn catalyzed by the Cp2ZrCl2—EtMgBr system. Russian Chemical Bulletin 2024, 73, 1900–1906. doi:10.1007/s11172-024-4307-6
  • Kumar, R.; Tewari, T.; Chikkali, S. H. Iron in Organometallic Transformations: A Sustainable Substitute for Noble Metals. ChemCatChem 2024. doi:10.1002/cctc.202400756
  • Sun, T.; Guo, L.; Li, Q.; Cao, Z. Nickel‐Catalyzed Chemoselective Carbomagnesiation for Atroposelective Ring‐Opening Difunctionalization. Angewandte Chemie 2024, 136. doi:10.1002/ange.202401756
  • Sun, T.; Guo, L.; Li, Q.; Cao, Z.-C. Nickel-Catalyzed Chemoselective Carbomagnesiation for Atroposelective Ring-Opening Difunctionalization. Angewandte Chemie (International ed. in English) 2024, 63, e202401756. doi:10.1002/anie.202401756
  • Yamaguchi, H.; Takahashi, F.; Kurogi, T.; Yorimitsu, H. Reductive anti-Dizincation of Arylacetylenes. Chemistry, an Asian journal 2024, 19, e202400384. doi:10.1002/asia.202400384
  • Semba, K. Olefin Difunctionalization With Two Different Atoms; 1,2-Carbofunctionalization of Olefins With Heteroatoms Other than O and N. Comprehensive Chirality; Elsevier, 2024; pp 371–405. doi:10.1016/b978-0-32-390644-9.00017-2
  • Wang, W.; Huang, Q.; Jin, Y.; Zhou, Q.; Zhu, S. Iron‐Catalyzed Alkenylzincation of Internal Alkynes†. Chinese Journal of Chemistry 2023, 41, 3547–3552. doi:10.1002/cjoc.202300356
  • Kassamba, S.; Reboli, M.; Perez-Luna, A.; Ferreira, F.; Durandetti, M. Synthesis of 6-membered germacycles by intramolecular germylzincation of alkynes. Organic Chemistry Frontiers 2023, 10, 3328–3335. doi:10.1039/d3qo00647f
  • Murakami, K. Development of Annulative Coupling and Aromatic Amination toward the Synthesis of Structurally New Aromatic Amines. Bulletin of the Chemical Society of Japan 2023, 96, 591–600. doi:10.1246/bcsj.20230064
  • Zhang, Y.; Guo, H.; Wu, Q.; Bi, X.; Shi, E.; Xiao, J. Stereoselective synthesis of (E)-α,β-unsaturated esters: triethylamine-catalyzed allylic rearrangement of enol phosphates. RSC advances 2023, 13, 13511–13515. doi:10.1039/d3ra02430j
  • Rajesh, M.; Kumar, G. R. Recent Progress in Arylmetalative Cyclization/Annulation of Functionalized Alkynes with Organoboranes. Asian Journal of Organic Chemistry 2023, 12. doi:10.1002/ajoc.202300106
  • Bora, J.; Dutta, M.; Chetia, B. Cobalt catalyzed alkenylation/annulation reactions of alkynes via C–H activation: A review. Tetrahedron 2023, 132, 133248. doi:10.1016/j.tet.2023.133248
  • Takahashi, F.; Kurogi, T.; Yorimitsu, H. Synthesis of trans-1,2-dimetalloalkenes through reductive anti-dimagnesiation and dialumination of alkynes. Nature Synthesis 2023, 2, 162–171. doi:10.1038/s44160-022-00189-z
  • Yu, Z.; Li, W.; Zhang, J. The progress of chiral phosphine ligands in asymmetric iron catalysis. Chiral Phosphorous Based Ligands in Earth-Abundant Transition Metal Catalysis; Elsevier, 2023; pp 67–95. doi:10.1016/b978-0-323-85225-8.00001-0
  • Meng, H.; Bai, S.; Qiao, Y.; He, T.; Li, W.; Ming, J. Rhodium-Catalyzed Three-Component Reaction of Alkynes, Arylzinc Chlorides, and Iodomethanes Producing Trisubstituted/Tetrasubstituted Alkenes with/without 1,4-Migration. Organic letters 2022, 24, 5480–5485. doi:10.1021/acs.orglett.2c02299
  • Tanaka, K. doi:10.1002/9781119736424.ch18
  • Huang, Q.; Wang, W.-N.; Zhu, S.-F. Iron-Catalyzed Alkylzincation of Terminal Alkynes. ACS Catalysis 2022, 12, 2581–2588. doi:10.1021/acscatal.1c05870
  • Huang, Q.; Su, Y.-X.; Sun, W.; Hu, M.-Y.; Wang, W.-N.; Zhu, S.-F. Iron-Catalyzed Vinylzincation of Terminal Alkynes. Journal of the American Chemical Society 2021, 144, 515–526. doi:10.1021/jacs.1c11072
  • Wu, Z.; Gockel, S. N.; Hull, K. L. Anti-Markovnikov hydro(amino)alkylation of vinylarenes via photoredox catalysis. Nature communications 2021, 12, 5956. doi:10.1038/s41467-021-26170-6
Other Beilstein-Institut Open Science Activities