Supporting Information
Supporting information features a table of each compound discussed in the review. This table contains the chemical structure, name, references and mechanism of action.
Supporting Information File 1: Table of compounds. | ||
Format: XLS | Size: 193.5 KB | Download |
Cite the Following Article
Recent progress in the discovery of small molecules for the treatment of amyotrophic lateral sclerosis (ALS)
Allison S. Limpert, Margrith E. Mattmann and Nicholas D. P. Cosford
Beilstein J. Org. Chem. 2013, 9, 717–732.
https://doi.org/10.3762/bjoc.9.82
How to Cite
Limpert, A. S.; Mattmann, M. E.; Cosford, N. D. P. Beilstein J. Org. Chem. 2013, 9, 717–732. doi:10.3762/bjoc.9.82
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Tsekrekou, M.; Giannakou, M.; Papanikolopoulou, K.; Skretas, G. Protein aggregation and therapeutic strategies in SOD1- and TDP-43- linked ALS. Frontiers in molecular biosciences 2024, 11, 1383453. doi:10.3389/fmolb.2024.1383453
- Gupta, A.; Laha, J. K. Growing Utilization of Radical Chemistry in the Synthesis of Pharmaceuticals. Chemical record (New York, N.Y.) 2023, 23, e202300207. doi:10.1002/tcr.202300207
- Elmansy, M. F.; Reidl, C. T.; Rahaman, M.; Özdinler, P. H.; Silverman, R. B. Small molecules targeting different cellular pathologies for the treatment of amyotrophic lateral sclerosis. Medicinal research reviews 2023, 43, 2260–2302. doi:10.1002/med.21974
- Spennato, M.; Roggero, O. M.; Varriale, S.; Asaro, F.; Cortesi, A.; Kašpar, J.; Tongiorgi, E.; Pezzella, C.; Gardossi, L. Neuroprotective Properties of Cardoon Leaves Extracts against Neurodevelopmental Deficits in an In Vitro Model of Rett Syndrome Depend on the Extraction Method and Harvest Time. Molecules (Basel, Switzerland) 2022, 27, 8772. doi:10.3390/molecules27248772
- Pampalakis, G.; Angelis, G.; Zingkou, E.; Vekrellis, K.; Sotiropoulou, G. A chemogenomic approach is required for effective treatment of amyotrophic lateral sclerosis. Clinical and translational medicine 2022, 12, e657. doi:10.1002/ctm2.657
- Rao, P. P.; Shakeri, A.; Zhao, Y.; Calon, F. Strategies in the design and development of (TAR) DNA-binding protein 43 (TDP-43) binding ligands. European journal of medicinal chemistry 2021, 225, 113753. doi:10.1016/j.ejmech.2021.113753
- Genç, B.; Gautam, M.; Gozutok, O.; Dervishi, I.; Sanchez, S. S.; Goshu, G. M.; Kocak, N.; Xie, E. F.; Silverman, R. B.; Özdinler, P. H. Improving mitochondria and ER stability helps eliminate upper motor neuron degeneration that occurs due to mSOD1 toxicity and TDP-43 pathology. Clinical and translational medicine 2021, 11, e336. doi:10.1002/ctm2.336
- Sodhi, R. K.; Grewal, A. K.; Madan, J.; Jhajj, T. G. S.; Kumar, R. Recent approaches to target apoptosis in neurological disorders. Clinical Perspectives and Targeted Therapies in Apoptosis; Elsevier, 2021; pp 217–283. doi:10.1016/b978-0-12-815762-6.00008-1
- Wang, G.; Rayner, S. L.; Chung, R. S.; Shi, B.; Liang, X.-J. Advances in nanotechnology-based strategies for the treatments of amyotrophic lateral sclerosis. Materials today. Bio 2020, 6, 100055. doi:10.1016/j.mtbio.2020.100055
- Zhu, Y.; Li, Y.; Xiang, S.; Fan, W.; Jin, J.; Huang, D. Utilization of nitriles as the nitrogen source: practical and economical construction of 4-aminopyrimidine and β-enaminonitrile skeletons. Organic Chemistry Frontiers 2019, 6, 3071–3077. doi:10.1039/c9qo00619b
- Sharma, V.; Ghosh, K. S. Inhibition of Amyloid Fibrillation by Small Molecules and Nanomaterials: Strategic Development of Pharmaceuticals Against Amyloidosis. Protein and peptide letters 2019, 26, 315–323. doi:10.2174/0929866526666190307164944
- Ramalho, T. C.; de Castro, A. A.; Tavares, T. S.; Silva, M. C.; Silva, D. R.; Cesar, P. H. S.; de Azevedo Santos, L.; da Cunha, E. F. F.; Nepovimova, E.; Kuca, K. Insights into the pharmaceuticals and mechanisms of neurological orphan diseases: Current Status and future expectations. Progress in neurobiology 2018, 169, 135–157. doi:10.1016/j.pneurobio.2018.06.011
- Liu, D.; Nie, Q.; Cai, M. Heterogeneous gold(I)-catalyzed [2 + 2 + 2] annulation between ynamides and nitriles: Straightforward synthesis of tetrasubstituted pyrimidines. Tetrahedron 2018, 74, 3020–3029. doi:10.1016/j.tet.2018.05.006
- Kim, J. M.; Billington, E.; Reyes, A.; Notarianni, T.; Sage, J. M.; Agbas, E.; Taylor, M.; Monast, I.; Stanford, J. A.; Agbas, A. Impaired Cu-Zn Superoxide Dismutase (SOD1) and Calcineurin (Cn) Interaction in ALS: A Presumed Consequence for TDP-43 and Zinc Aggregation in Tg SOD1G93A Rodent Spinal Cord Tissue. Neurochemical research 2018, 44, 228–233. doi:10.1007/s11064-017-2461-z
- Kim, J. M.; Billington, E.; Reyes, A.; Notarianni, T.; Sage, J. M.; Agbas, E.; Taylor, M.; Monast, I.; Stanford, J. A.; Agbas, A. Impaired Cu-Zn superoxide dismutase (SOD1) and calcineurin (Cn) interaction in ALS: A presumed consequence for TDP-43 and zinc aggregation in Tg SOD1G93A rodent spinal cord tissue. Cold Spring Harbor Laboratory 2017, 220210. doi:10.1101/220210
- Allen, C. F.; Shaw, P. J.; Ferraiuolo, L. Can astrocytes be a target for precision medicine. Advances in experimental medicine and biology 2017, 1007, 111–128. doi:10.1007/978-3-319-60733-7_7
- Banerjee, V.; Oren, O.; Ben-Zeev, E.; Taube, R.; Engel, S.; Papo, N. A computational combinatorial approach identifies a protein inhibitor of superoxide dismutase 1 misfolding, aggregation, and cytotoxicity. The Journal of biological chemistry 2017, 292, 15777–15788. doi:10.1074/jbc.m117.789610
- Kreiner, G.; Rafa-Zabłocka, K.; Chmielarz, P.; Baginska, M.; Nalepa, I. Lack of riluzole efficacy in the progression of the neurodegenerative phenotype in a new conditional mouse model of striatal degeneration. PeerJ 2017, 5, 0. doi:10.7717/peerj.3240
- Abdoulaye, I. A.; Guo, Y. A Review of Recent Advances in Neuroprotective Potential of 3-N-Butylphthalide and Its Derivatives. BioMed research international 2016, 2016, 5012341. doi:10.1155/2016/5012341
- Fay, J. M.; Zhu, C.; Proctor, E. A.; Tao, Y.; Cui, W.; Ke, H.; Dokholyan, N. V. A Phosphomimetic Mutation Stabilizes SOD1 and Rescues Cell Viability in the Context of an ALS-Associated Mutation. Structure (London, England : 1993) 2016, 24, 1898–1906. doi:10.1016/j.str.2016.08.011