Supporting Information
Supporting Information File 1: Experimental procedures, characterization data of new compounds, and 1H/13C NMR spectra. | ||
Format: PDF | Size: 1.2 MB | Download |
Cite the Following Article
Formal synthesis of (−)-agelastatin A: an iron(II)-mediated cyclization strategy
Daisuke Shigeoka, Takuma Kamon and Takehiko Yoshimitsu
Beilstein J. Org. Chem. 2013, 9, 860–865.
https://doi.org/10.3762/bjoc.9.99
How to Cite
Shigeoka, D.; Kamon, T.; Yoshimitsu, T. Beilstein J. Org. Chem. 2013, 9, 860–865. doi:10.3762/bjoc.9.99
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- D'Ambrosio, M. The N-Alkylation of Agelastatin A Modulates Its Chemical Reactivity. Molecules (Basel, Switzerland) 2023, 28, 6821. doi:10.3390/molecules28196821
- Xue, H.; Svatek, H.; Bertonha, A. F.; Reisenauer, K. N.; Robinson, J.; Kim, M.; Ingros, A.; Ho, M.; Taube, J. H.; Romo, D. Synthesis of agelastatin A and derivatives premised on a hidden symmetry element leading to analogs displaying anticancer activity. Tetrahedron 2021, 94, 132340. doi:10.1016/j.tet.2021.132340
- Winant, P.; Horsten, T.; de Melo, S. M. G.; da Silva Emery, F.; Dehaen, W. A Review of the Synthetic Strategies toward Dihydropyrrolo[1,2-a]Pyrazinones. Organics 2021, 2, 118–141. doi:10.3390/org2020011
- Yoshimitsu, T. Chemical syntheses and biological studies of agelastatin A, a bioactive marine heterocycle gifted from nature. HETEROCYCLES 2020, 100, 1735–1762. doi:10.3987/rev-20-929
- Yoshimitsu, T. Strategic Use of Nitrogen Free Radicals in Natural Product Synthesis: Total Synthesis of Agelastatin A. Journal of Synthetic Organic Chemistry, Japan 2019, 77, 472–481. doi:10.5059/yukigoseikyokaishi.77.472
- Tsuchimochi, I.; Kitamura, Y.; Aoyama, H.; Akai, S.; Nakai, K.; Yoshimitsu, T. Total synthesis of (−)-agelastatin A: an SH2′ radical azidation strategy. Chemical communications (Cambridge, England) 2018, 54, 9893–9896. doi:10.1039/c8cc05697h
- Buttar, S.; Caine, J.; Goné, E.; Harris, R.; Gillman, J.; Atienza, R.; Gupta, R.; Sogi, K. M.; Jain, L.; Abascal, N. C.; Levine, Y.; Repka, L. M.; Rojas, C. M. Glycal Metallanitrenes for 2-Amino Sugar Synthesis: Amidoglycosylation of Gulal-, Allal-, Glucal-, and Galactal 3-Carbamates. The Journal of organic chemistry 2018, 83, 8054–8080. doi:10.1021/acs.joc.8b00893
- Sinka, V.; Cruz, D. A.; López-Soria, J. M.; Martín, V. S.; Miranda, P. O.; Padrón, J. I. Synthesis of heterocycles with iron salts as sustainable metal catalysts. Advances in Transition-Metal Mediated Heterocyclic Synthesis; Elsevier, 2018; pp 193–229. doi:10.1016/b978-0-12-811651-7.00005-4
- Antropow, A. H.; Xu, K.; Buchsbaum, R. J.; Movassaghi, M. Synthesis and Evaluation of Agelastatin Derivatives as Potent Modulators for Cancer Invasion and Metastasis. The Journal of organic chemistry 2017, 82, 7720–7731. doi:10.1021/acs.joc.7b01162
- Gualandi, A.; Mengozzi, L.; Cozzi, P. G. Iron‐Promoted Radical Reactions: Current Status and Perspectives. Asian Journal of Organic Chemistry 2017, 6, 1160–1179. doi:10.1002/ajoc.201700151
- Lindel, T. Chemistry and Biology of the Pyrrole-Imidazole Alkaloids. The Alkaloids. Chemistry and biology 2017, 77, 117–219. doi:10.1016/bs.alkal.2016.12.001
- Yoshimitsu, T.; Tun, H. W. Compounds, compositions, and methods of agelastatin alkaloids: patent evaluation of WO2015042239 (A1). Expert opinion on therapeutic patents 2017, 27, 113–119. doi:10.1080/13543776.2017.1273902
- Li, D.; Wu, T.; Liang, K.; Xia, C. Curtius-like Rearrangement of an Iron–Nitrenoid Complex and Application in Biomimetic Synthesis of Bisindolylmethanes. Organic letters 2016, 18, 2228–2231. doi:10.1021/acs.orglett.6b00864
- Crossley, S. W. M.; Shenvi, R. A. A Longitudinal Study of Alkaloid Synthesis Reveals Functional Group Interconversions as Bad Actors. Chemical reviews 2015, 115, 9465–9531. doi:10.1021/acs.chemrev.5b00154
- Tian, J.-S.; Zhu, C.-L.; Chen, Y.-R.; Xu, H. Iron-Catalyzed Diastereoselective Intramolecular Olefin Aminobromination with Bromide Ion. Synthesis 2015, 47, 1709–1715. doi:10.1055/s-0034-1378719
- Yoshimitsu, T. Endeavors to access molecular complexity: strategic use of free radicals in natural product synthesis. Chemical record (New York, N.Y.) 2014, 14, 268–279. doi:10.1002/tcr.201300024
- Stephenson, C. R. J.; Studer, A.; Curran, D. P. The renaissance of organic radical chemistry - deja vu all over again. Beilstein journal of organic chemistry 2013, 9, 2778–2780. doi:10.3762/bjoc.9.312
- Han, S.; Siegel, D. S.; Morrison, K. C.; Hergenrother, P. J.; Movassaghi, M. Synthesis and Anticancer Activity of All Known (−)-Agelastatin Alkaloids. The Journal of organic chemistry 2013, 78, 11970–11984. doi:10.1021/jo4020112
- Duspara, P. A.; Batey, R. A. A Short Total Synthesis of the Marine Sponge Pyrrole‐2‐aminoimidazole Alkaloid (±)‐Agelastatin A. Angewandte Chemie (International ed. in English) 2013, 52, 10862–10866. doi:10.1002/anie.201304759
- Duspara, P. A.; Batey, R. A. A Short Total Synthesis of the Marine Sponge Pyrrole‐2‐aminoimidazole Alkaloid (±)‐Agelastatin A. Angewandte Chemie 2013, 125, 11062–11066. doi:10.1002/ange.201304759