Beilstein J. Org. Chem. 2025, 21, 122–145, doi:10.3762/bjoc.21.7
Graphical Abstract
Figure 1: Plausible general catalytic activation for ionic or radical mechanisms.
Scheme 1: Synthesis of α-aminonitriles 1.
Scheme 2: Synthesis of β-amino ketone or β-amino ester derivatives 3.
Scheme 3: Synthesis of 1-(α-aminoalkyl)-2-naphthol derivatives 4.
Scheme 4: Synthesis of thioaminals 5.
Scheme 5: Synthesis of aryl- or amine-containing alkanes 6 and 7.
Scheme 6: Synthesis of 1-aryl-2-sulfonamidopropanes 8.
Scheme 7: Synthesis of α-substituted propargylamines 10.
Scheme 8: Synthesis of N-propargylcarbamates 11.
Scheme 9: Synthesis of (E)-vinyl sulfones 12.
Scheme 10: Synthesis of o-halo-substituted aryl chalcogenides 13.
Scheme 11: Synthesis of α-aminophosphonates 14.
Scheme 12: Synthesis of unsaturated furanones and pyranones 15–17.
Scheme 13: Synthesis of substituted dihydropyrimidines 18.
Scheme 14: Regioselective synthesis of 1,4-dihydropyridines 20.
Scheme 15: Synthesis of tetrahydropyridines 21.
Scheme 16: Synthesis of furoquinoxalines 22.
Scheme 17: Synthesis of 2,4-substituted quinolines 23.
Scheme 18: Synthesis of cyclic ether-fused tetrahydroquinolines 24.
Scheme 19: Practical route for 1,2-dihydroisoquinolines 25.
Scheme 20: Synthesis of 2,3-dihydroquinazolin-4(1H)-one derivatives 26.
Scheme 21: Synthesis of polysubstituted pyrroles 27.
Scheme 22: Enantioselective synthesis of polysubstituted pyrrolidines 30 directed by the copper complex 29.
Scheme 23: Synthesis of 4,5-dihydropyrazoles 31.
Scheme 24: Synthesis of 2 arylisoindolinones 32.
Scheme 25: Synthesis of imidazo[1,2-a]pyridines 33.
Scheme 26: Synthesis of isoxazole-linked imidazo[1,2-a]azines 35.
Scheme 27: Synthesis of 2,3-dihydro-1,2,4-triazoles 36.
Scheme 28: Synthesis of naphthopyrans 37.
Scheme 29: Synthesis of benzo[g]chromene derivatives 38.
Scheme 30: Synthesis of naphthalene annulated 2-aminothiazoles 39, piperazinyl-thiazoloquinolines 40 and thiaz...
Scheme 31: Synthesis of furo[3,4-b]pyrazolo[4,3-f]quinolinones 42.
Scheme 32: Synthesis of spiroindoline-3,4’-pyrano[3,2-b]pyran-4-ones 43.
Scheme 33: Synthesis of N-(α-alkoxy)alkyl-1,2,3-triazoles 44.
Scheme 34: Synthesis of 4-(α-tetrasubstituted)alkyl-1,2,3-triazoles 45.
Beilstein J. Org. Chem. 2012, 8, 1730–1746, doi:10.3762/bjoc.8.198
Graphical Abstract
Scheme 1: Typical catalytic cycle for Pd(II)-catalyzed alkenylation of indoles.
Scheme 2: Application of Fujiwara’s reaction to electron-rich heterocycles.
Scheme 3: Regioselective alkenylation of the unprotected indole.
Scheme 4: Plausible mechanism of the selective indole alkenylation, adapted from [49].
Scheme 5: Directing-group control in intermolecular indole alkenylation.
Scheme 6: Direct C–H alkenylation of N-(2-pyridyl)sulfonylindole.
Scheme 7: N-Prenylation of indoles with 2-methyl-2-butene.
Scheme 8: Proposed mechanism of the N-indolyl prenylation.
Scheme 9: Regioselective arylation of indoles by dual C–H functionalization.
Scheme 10: Plausible mechanism of the selective indole arylation.
Scheme 11: Chemoselective cyclization of N-allyl-1H-indole-2-carboxamide derivatives.
Scheme 12: Intramolecular annulations of alkenylindoles.
Scheme 13: A mechanistic probe for intramolecular annulations of alkenylindoles, adapted from Ferreira et al. [66]....
Scheme 14: Asymmetric indole annulations catalyzed by chiral Pd(II) complexes.
Scheme 15: Aerobic Pd(II)-catalyzed endo cyclization and subsequent amide cleavage/ester formation.
Scheme 16: Synthesis of the pyrimido[3,4-a]indole skeleton by intramolecular C-2 alkenylation.
Scheme 17: Synthesis of azepinoindoles by oxidative Heck cyclization.
Scheme 18: Enantioselective synthesis of 4-vinyl-substituted tetrahydro-β-carbolines.
Scheme 19: Pd-catalyzed endo-cyclization of 3-alkenylindoles for the construction of carbazoles.
Scheme 20: Pd-catalyzed hydroamination of 2-indolyl allenamides.
Scheme 21: Amidation reaction of 1-allyl-2-indolecarboxamides.
Scheme 22: Intramolecular cyclization of N-benzoylindole.
Scheme 23: Intramolecular alkenylation/carboxylation of alkenylindoles.
Scheme 24: Intermolecular alkenylation/carboxylation of 2-substituted indoles.
Scheme 25: Mechanistic investigation of the cyclization/carboxylation reaction.
Scheme 26: Plausible catalytic cycle for the cyclization/carboxylation of alkenylindoles, adapted from Liu et ...
Scheme 27: Intramolecular domino reactions of indolylallylamides through alkenylation/halogenation or alkenyla...
Scheme 28: Proposed mechanism for the alkenylation/esterification process through iminium intermediates.
Scheme 29: Cyclization of 3-indolylallylcarboxamides involving 1,2-migration of the acyl group from spiro-inte...
Scheme 30: Domino reactions of 2-indolylallylcarboxamides involving N–H functionalization.
Scheme 31: Cyclization/acyloxylation reaction of 3-alkenylindoles.
Scheme 32: Doubly intramolecular C–H functionalization of a 2-indolylcarboxamide bearing two allylic groups.