This search combines search strings from the content search (i.e. "Full Text", "Author", "Title", "Abstract", or "Keywords") with "Article Type" and "Publication Date Range" using the AND operator.
Beilstein J. Org. Chem. 2024, 20, 228–242, doi:10.3762/bjoc.20.23
Graphical Abstract
Figure 1: Precursors used in the synthesis of indigo [4].
Figure 2: a) Intramolecular (a = 2.26 Å) and intermolecular (b = 2.11 Å) hydrogen bonds in indigo, b) crystal...
Figure 3: Bond length in the indigo molecule obtained from the single crystal X-ray analysis [12], the typical bo...
Figure 4: The structure of the indigo chromophore (H-chromophore, highlighted in blue), asterisk indicates th...
Figure 5: Influence of substituents in the benzene rings on the color of indigo derivatives.
Figure 6: a) E–Z photoisomerization of indigo and b) photoinduced proton transfer in the excited state, aster...
Figure 7: Structures of indigo derivatives discussed in this review.
Figure 8: Photoswitching of N,N'-diacetylindigo (9a) in CCl4 (c = 17.1 µM; cell length = 5.0 cm) irradiated w...
Figure 9: Photoisomerization of compound 18c upon irradiation with red light and schematic representation of ...
Figure 10: Schematic representation of indigo-type (left) and amide-type (right) resonances in N,N'-acetylindi...
Figure 11: Suggested intermediates for the double bond cleavage for the thermal relaxation of N,N'-diacylindig...
Figure 12: Zwitterionic resonance structures of Z-indigo.
Figure 13: Photos of crystalline N,N'-di(Boc)indigo 17a its solutions in 1) DMSO, 2) DMF, 3) N-methyl-2-pyrrol...
Figure 14: Structural isomers of indigo.
Figure 15: Photochromism of indirubin derivatives and supramolecular complexation of the E-isomers with Schrei...
Figure 16: Photoisomerization of the protonated isoindigo.
Beilstein J. Org. Chem. 2020, 16, 2282–2296, doi:10.3762/bjoc.16.189
Scheme 1: Synthetic pathways of dyes 3–7 and Schiff base analogs 8–12.
Figure 1: The optimized geometry of dyes 3 and 8.
Figure 2: Absorption spectra of dyes 3 (a, left) and 8 (b, right). Inset: Color of dyes 3 and 8 in the given ...
Figure 3: Emission spectra of dyes 3 (a, left) and 8 (b, right). Inset: Color of dyes 3 and 8 in the indicate...
Figure 4: Red shift phenomena with changing substituents in absorption (a, left) and emission (b, right) spec...
Figure 5: Absorption (a, left) and emission (b, right) change of dye 12 upon addition of 15 equiv of TBAOH an...
Figure 6: Photographs of dye 12 (left, ambient light), without, after the addition of 15 equiv of TBAOH (midd...
Figure 7: Absorption (a, left) and emission (b, right) change of 8 in Britton–Robinson buffer solutions at di...
Figure 8: Photographs of dye 8 in Britton–Robinson buffer solutions at different pH values.
Figure 9: Sigmoid function obtained from dye 8 UV–vis absorption spectra during pH investigation.
Figure 10: TGA curves of all synthetized dyes.