This search combines search strings from the content search (i.e. "Full Text", "Author", "Title", "Abstract", or "Keywords") with "Article Type" and "Publication Date Range" using the AND operator.
Beilstein J. Org. Chem. 2025, 21, 412–420, doi:10.3762/bjoc.21.29
Graphical Abstract
Figure 1: Series o-carborane-fused pyrazoles under analysis.
Figure 2: Bond lengths (in Å) of systems under analysis (top row) and reference systems (second and third row...
Figure 3: Series of reference systems for the o-carborane-fused pyrazoles under analysis.
Figure 4: NICS (in ppm) of the boron cages (computed for the top 5-membered ring, center and bottom 5-membere...
Figure 5: AICD plots of systems under analysis from the fusion of o-carborane and pyrazole/pyrazoline and ref...
Figure 6: Current density maps (all-electron contributions) for a perpendicular magnetic field over a plane 1...
Beilstein J. Org. Chem. 2024, 20, 272–279, doi:10.3762/bjoc.20.28
Scheme 1: Rhodium(I)-catalyzed cycloaddition of C60 with diynes to afford bis(fulleroid) derivatives [33].
Figure 1: Types of [6,6]-bonds together with the [5,6]-bond of C60 with their C–C distances in pristine C60 a...
Scheme 2: Rhodium-catalyzed cycloaddition of C70 with diynes 1a and 1b.
Figure 2: 1H NMR (CS2/CDCl3, 400 MHz) spectrum of compound 2a as a mixture of two isomers.
Figure 3: B3LYP-D3/cc-pVTZ-PP(SMD=o-DCB)//B3LYP-D3/CC-pVDZ-PP Gibbs energy profile of the [2 + 2 + 2] cycload...
Scheme 3: Oxidative cleavage of bis(fulleroid) derivatives 2a and 2b.
Figure 4: 1H NMR (CS2/CDCl3, 400 MHz) spectrum of compound 3a as a mixture of three isomers. X = residual tol...
Beilstein J. Org. Chem. 2013, 9, 585–593, doi:10.3762/bjoc.9.63
Figure 1: Stationary points located along the reaction path of the aromatic hydroxylation mechanism (some H a...
Figure 2: Computed structures of the potential equilibrium between the peroxo and bis-μ-oxo intermediates (so...
Figure 3: Computed structures for a potential alternative pathway f→g of the σ* mechanism (some H atoms omitt...
Figure 4: Computed structures for a potential alternative pathway e→g of the σ* mechanism (some H atoms omitt...
Figure 5: Computed structures for a potential alternative pathway j→i of the σ* mechanism (Gibbs energies in ...
Figure 6: Computed structures for a potential alternative pathway b→g of the σ* mechanism (some H atoms omitt...
Figure 7: Computed structures for a potential alternative pathway c→g of the σ* mechanism (some H atoms omitt...