This search combines search strings from the content search (i.e. "Full Text", "Author", "Title", "Abstract", or "Keywords") with "Article Type" and "Publication Date Range" using the AND operator.
Beilstein J. Org. Chem. 2025, 21, 253–261, doi:10.3762/bjoc.21.17
Graphical Abstract
Scheme 1: Different strategies for the synthesis of disulfides and 3-sulfenylchromones.
Scheme 2: Substrate scope for the synthesis of disulfides. Reaction conditions: 1 (1 mmol), TBAI (0.2 mmol), H...
Scheme 3: Substrate scope for the synthesis of 3-sulfenylchromones. Reaction conditions: 1 (1 mmol), 3 (0.5 m...
Scheme 4: Gram-scale synthesis of 2a and 4a and one-pot synthesis of 4a.
Scheme 5: Control experiments.
Scheme 6: Plausible reaction mechanism.
Beilstein J. Org. Chem. 2017, 13, 1735–1744, doi:10.3762/bjoc.13.168
Figure 1: Structures of imidazolium salts L1–L3.
Scheme 1: The synthetic route for the preparation of imidazolium salts L1–L3.
Figure 2: Kinetic profiles of Mizoroki–Heck reactions in water, Na2PdCl4/L1 (square), L2 (circle), and L3 (tr...
Figure 3: Reusability of the Na2PdCl4/L1 catalytic system for the catalytic Mizoroki–Heck coupling reaction o...