Search results

Search for "photoinduced electron transfer (PET)" in Full Text gives 29 result(s) in Beilstein Journal of Organic Chemistry.

Flow photochemistry: Old light through new windows

  • Jonathan P. Knowles,
  • Luke D. Elliott and
  • Kevin I. Booker-Milburn

Beilstein J. Org. Chem. 2012, 8, 2025–2052, doi:10.3762/bjoc.8.229

Graphical Abstract
PDF
Album
Review
Published 21 Nov 2012

Fine-tuning alkyne cycloadditions: Insights into photochemistry responsible for the double-strand DNA cleavage via structural perturbations in diaryl alkyne conjugates

  • Wang-Yong Yang,
  • Samantha A. Marrone,
  • Nalisha Minors,
  • Diego A. R. Zorio and
  • Igor V. Alabugin

Beilstein J. Org. Chem. 2011, 7, 813–823, doi:10.3762/bjoc.7.93

Graphical Abstract
  • the kinetics of photoinduced electron transfer (PET). The three analogous isomeric lysine conjugates cleaved DNA with different efficiencies (34, 15, and 0% of ds DNA cleavage for p-, m-, and o-substituted lysine conjugates, respectively) consistent with the alkylating ability of the respective
PDF
Album
Supp Info
Full Research Paper
Published 16 Jun 2011

Photoinduced electron-transfer chemistry of the bielectrophoric N-phthaloyl derivatives of the amino acids tyrosine, histidine and tryptophan

  • Axel G. Griesbeck,
  • Jörg Neudörfl and
  • Alan de Kiff

Beilstein J. Org. Chem. 2011, 7, 518–524, doi:10.3762/bjoc.7.60

Graphical Abstract
  • and tryptophan 8–10 was studied with respect to photoinduced electron-transfer (PET) induced decarboxylation and Norrish II bond cleavage. Whereas exclusive photodecarboxylation of the tyrosine substrate 8 was observed, the histidine compound 9 resulted in a mixture of histamine and preferential
  • photoinduced electron-transfer (PET) reactions. N-Alkylated phthalimides typically absorb in the 295 nm region with extinction coefficients around 103. The quantum yields for intersystem crossing ФISC significantly change with the substitution on the imide nitrogen, e.g., ФISC = 0.5 for N-isobutylphthalimide
PDF
Album
Full Research Paper
Published 26 Apr 2011

Molecular recognition of organic ammonium ions in solution using synthetic receptors

  • Andreas Späth and
  • Burkhard König

Beilstein J. Org. Chem. 2010, 6, No. 32, doi:10.3762/bjoc.6.32

Graphical Abstract
  • electron transfer (PET) is inhibited and the system shows an enhanced fluorescence. The binding was dependent on the chain length between the two cations, displaying a maximum stability in the case of the protonated 1,3-diaminopropane. for the bis(aza-15-crown-5) chemosensor 48a the following binding
  • alkyldiammonium ions in ethanol or in a chloroform/methanol mixture (9:1) based on the PET principle [191]. The fluorescence of the anthracene function is quenched by the free electron pairs of the nitrogen atoms. When hydrogen bonds are formed by both nitrogen atoms to the bis-ammonium guests, the photoinduced
PDF
Album
Review
Published 06 Apr 2010
Other Beilstein-Institut Open Science Activities