Search for "dihydrofuran" in Full Text gives 58 result(s) in Beilstein Journal of Organic Chemistry.
Beilstein J. Org. Chem. 2011, 7, 442–495, doi:10.3762/bjoc.7.57
Graphical Abstract
Figure 1: Structures of atorvastatin and other commercial statins.
Figure 2: Structure of compactin.
Scheme 1: Synthesis of pentasubstituted pyrroles.
Scheme 2: [3 + 2] Cycloaddition to prepare 5-isopropylpyrroles.
Scheme 3: Regiospecific [3 + 2] cycloaddition to prepare the pyrrole scaffold.
Scheme 4: Formation of the pyrrole core of atorvastatin via [3 + 2] cycloaddition.
Scheme 5: Formation of pyrrole 33 via the Paal–Knorr reaction.
Scheme 6: Convergent synthesis towards atorvastatin.
Figure 3: Binding pocket of sunitinib in the TRK KIT.
Scheme 7: Synthesis of sunitinib.
Scheme 8: Alternative synthesis of sunitinib.
Scheme 9: Key steps in the syntheses of sumatriptan and zolmitriptan.
Scheme 10: Introduction of the N,N-dimethylaminoethyl side chain.
Scheme 11: Japp–Klingemann reaction in the synthesis of sumatriptan.
Scheme 12: Synthesis of the intermediate sulfonyl chlorides 62 and 63.
Scheme 13: Alternative introduction of the sulfonamide.
Scheme 14: Negishi-type coupling to benzylic sulfonamides.
Scheme 15: Heck reaction used to introduce the sulfonamide side chain of naratriptan.
Scheme 16: Synthesis of the oxazolinone appendage of zolmitriptan.
Scheme 17: Grandberg indole synthesis used in the preparation of rizatriptan.
Scheme 18: Improved synthesis of rizatriptan.
Scheme 19: Larock-type synthesis of rizatriptan.
Scheme 20: Synthesis of eletriptan.
Scheme 21: Heck coupling for the indole system in eletriptan.
Scheme 22: Attempted Fischer indole synthesis of elatriptan.
Scheme 23: Successful Fischer indole synthesis for eletriptan.
Scheme 24: Mechanistic rationale for the Bischler–Möhlau reaction.
Scheme 25: Bischler-type indole synthesis used in the fluvastatin sodium synthesis.
Scheme 26: Palladium-mediated synthesis of ondansetron.
Scheme 27: Fischer indole synthesis of ondansetron.
Scheme 28: Optimised Pictet–Spengler reaction towards tadalafil.
Figure 4: Structures of carvedilol 136 and propranolol 137.
Scheme 29: Synthesis of the carbazole core of carvedilol.
Scheme 30: Alternative syntheses of 4-hydroxy-9H-carbazole.
Scheme 31: Convergent synthesis of etodolac.
Scheme 32: Alternative synthesis of etodolac.
Figure 5: Structures of imidazole-containing drugs.
Scheme 33: Synthesis of functionalised imidazoles towards losartan.
Scheme 34: Direct synthesis of the chlorinated imidazole in losartan.
Scheme 35: Synthesis of trisubstituted imidazoles.
Scheme 36: Preparation of the imidazole ring in olmesartan.
Scheme 37: Synthesis of ondansetron.
Scheme 38: Alternative route to ondansetron and its analogues.
Scheme 39: Proton pump inhibitors and synthesis of esomeprazole.
Scheme 40: Synthesis of benzimidazole core pantoprazole.
Figure 6: Structure of rabeprazole 194.
Scheme 41: Synthesis of candesartan.
Scheme 42: Alternative access to the candesartan key intermediate 216.
Scheme 43: .Medicinal chemistry route to telmisartan.
Scheme 44: Improved synthesis of telmisartan.
Scheme 45: Synthesis of zolpidem.
Scheme 46: Copper-catalysed 3-component coupling towards zolpidem.
Figure 7: Structure of celecoxib.
Scheme 47: Preparation of celecoxib.
Scheme 48: Alternative synthesis of celecoxib.
Scheme 49: Regioselective access to celecoxib.
Scheme 50: Synthesis of pazopanib.
Scheme 51: Syntheses of anastrozole, rizatriptan and letrozole.
Scheme 52: Regioselective synthesis of anastrozole.
Scheme 53: Triazine-mediated triazole formation towards anastrozole.
Scheme 54: Alternative routes to 1,2,4-triazoles.
Scheme 55: Initial synthetic route to sitagliptin.
Figure 8: Binding of sitagliptin within DPP-IV.
Scheme 56: The process route to sitagliptin key intermediate 280.
Scheme 57: Synthesis of maraviroc.
Scheme 58: Synthesis of alprazolam.
Scheme 59: The use of N-nitrosoamidine derivatives in the preparation of fused benzodiazepines.
Figure 9: Structures of itraconazole, ravuconazole and voriconazole.
Scheme 60: Synthesis of itraconazole.
Scheme 61: Synthesis of rufinamide.
Scheme 62: Representative tetrazole formation in valsartan.
Figure 10: Structure of tetrazole containing olmesartan, candesartan and irbesartan.
Scheme 63: Early stage introduction of the tetrazole in losartan.
Scheme 64: Synthesis of cilostazol.
Figure 11: Structure of cefdinir.
Scheme 65: Semi-synthesis of cefdinir.
Scheme 66: Thiazole syntheses towards ritonavir.
Scheme 67: Synthesis towards pramipexole.
Scheme 68: Alternative route to pramipexole.
Scheme 69: Synthesis of famotidine.
Scheme 70: Efficient synthesis of the hyperuricemic febuxostat.
Scheme 71: Synthesis of ziprasidone.
Figure 12: Structure of mometasone.
Scheme 72: Industrial access to 2-furoic acid present in mometasone.
Scheme 73: Synthesis of ranitidine from furfuryl alcohol.
Scheme 74: Synthesis of nitrofurantoin.
Scheme 75: Synthesis of benzofuran.
Scheme 76: Synthesis of amiodarone.
Scheme 77: Synthesis of raloxifene.
Scheme 78: Alternative access to the benzo[b]thiophene core of raloxifene.
Scheme 79: Gewald reaction in the synthesis of olanzapine.
Scheme 80: Alternative synthesis of olanzapine.
Figure 13: Access to simple thiophene-containing drugs.
Scheme 81: Synthesis of clopidogrel.
Scheme 82: Pictet–Spengler reaction in the preparation of tetrahydrothieno[3,2-c]pyridine (422).
Scheme 83: Alternative synthesis of key intermediate 422.
Figure 14: Co-crystal structures of timolol (left) and carazolol (right) in the β-adrenergic receptor.
Scheme 84: Synthesis of timolol.
Scheme 85: Synthesis of tizanidine 440.
Scheme 86: Synthesis of leflunomide.
Scheme 87: Synthesis of sulfamethoxazole.
Scheme 88: Synthesis of risperidone.
Figure 15: Relative abundance of selected transformations.
Figure 16: The abundance of heterocycles within top 200 drugs (5-membered rings).
Beilstein J. Org. Chem. 2010, 6, 1219–1228, doi:10.3762/bjoc.6.140
Graphical Abstract
Scheme 1: a) Variation of olefin metathesis: CM = cross-metathesis; RCM = ring-closing metathesis; ROM = ring...
Figure 1: Allylic hydroxy activation in RCM [19].
Figure 2: Possible complexes generated through preassociation of allylic alcohol with ruthenium.
Scheme 2: The influence of different OR groups on ring size-selectivity [21].
Scheme 3: Synthesis of palmerolide A precursors by Nicolaou et al. illustrates enhancement by an allylic hydr...
Scheme 4: a) Acceleration of ring-closing enyne metathesis by the allylic hydroxy group [23]. b) Proposed mode of...
Scheme 5: a) Effect of the hydroxy group on the rate and steroselectivity of ROCM [24]. b) Proposed H-bonded ruth...
Scheme 6: Plausible explanation for chemoselective CM of diene 16 [25].
Scheme 7: a) Efficient cross-metathesis of S-allylcysteine [17]. b) Comparison of relative reactivity between all...
Scheme 8: a) Macrocycle synthesis by carbonyl-relayed RCM. b) Putative complex in carbonyl-relayed RCM [33].
Scheme 9: a) Sulfur assisted cross-metathesis [17]. b) Putative unproductive chelates for larger ring sizes gener...
Scheme 10: Functionalization of Mukaiyama aldol product by CM in aqueous media [37].
Scheme 11: Comparison of reactivity between allyl sulfides and allyl selenides in aqueous cross-metathesis [38].
Scheme 12: Ring-closing metathesis on a protein [18].
Scheme 13: Expanded substrate scope of cross-metathesis on proteins [38].
Beilstein J. Org. Chem. 2010, 6, 1106–1119, doi:10.3762/bjoc.6.127
Graphical Abstract
Scheme 1: Light activated metathesis of trans-2-pentene.
Scheme 2: Light induced generation of metathesis active species 2.
Figure 1: Well-defined tungsten photoactive catalysts.
Figure 2: The first ruthenium based complexes for PROMP.
Figure 3: Cyclic strained alkenes for PROMP.
Scheme 3: Proposed mechanism for photoactivation of sandwich complexes.
Figure 4: Ruthenium and osmium complexes with p-cymene and phosphane ligands for PROMP.
Figure 5: Commercially available photoactive ruthenium precatalyst.
Figure 6: Some of the rings produced by photo-RCM.
Scheme 4: Photopromoted ene-yne RCM by cationic allenylidene ruthenium complex 14.
Figure 7: Dihydrofurans synthesised by photopromoted ene-yne RCM.
Figure 8: Ruthenium complexes with p-cymene and NHC ligands.
Scheme 5: Ruthenium NHC complexes for PROMP containing p-cymene and trifluroacetate (17, 19) or phenylisonitr...
Figure 9: Photoactivated cationic ROMP precatalysts.
Figure 10: Different monomers for PROMP.
Scheme 6: Proposed mechanism for photoinitiated polymerisation by 22 and 23.
Figure 11: Light-induced cationic catalysts for ROMP.
Figure 12: Sulfur chelated ruthenium benzylidene pre-catalysts for olefin metathesis.
Scheme 7: Proposed mechanism for the photoactivation of sulfur-chelated ruthenium benzylidene.
Figure 13: Photoacid generators for photoinduced metathesis.
Scheme 8: Synthesis of precatalysts 36 and 37.
Scheme 9: Trapping of proposed intermediate 41.
Figure 14: Encapsulated 39, isolated from the monomer.
Beilstein J. Org. Chem. 2010, 6, 1002–1014, doi:10.3762/bjoc.6.113
Graphical Abstract
Figure 1: Chemical structures of compounds 1–3.
Scheme 1: Acid-catalysed behaviour of 4,5-bis(2-arylhydroxymethyl)-1,3-dithiole-2-thiones 2.
Scheme 2: The proposed mechanism for the formation of 3.
Scheme 3: The proposed mechanism for the decomposition of 13 in the presence of perchloric acid.
Figure 2: Generalised structure of diol 17.
Scheme 4: Reagents and conditions: (i) LDA (1 equiv), 2,4-dimethoxybenzaldehyde (1 equiv), then repeat, −78 °...
Scheme 5: Reagents and conditions: (i) ethylenediamine, AcOH, MeOH; (ii) P(OEt)3, 120 °C, 3 h.
Figure 3: Molecular structure and numbering scheme of compound 22 with Hs omitted.
Scheme 6: Reagents and conditions: (i) P(OEt)3, reflux; (ii) Hg(OAc)2, CH2Cl2/AcOH; (iii) NaOEt, THF, reflux,...
Figure 4: Molecular structure of 28 with the tetrabutylammonium cation omitted.
Figure 5: Packing diagram of 28 identifying close intermolecular contacts.
Figure 6: UV–visible spectra of 3, 25, 27 and 28 in CH2Cl2 solution.
Figure 7: Cyclic voltammograms of compounds 3, 25, 27, and 28. Glassy carbon working electrode, using Pt wire...
Beilstein J. Org. Chem. 2010, 6, No. 75, doi:10.3762/bjoc.6.75
Graphical Abstract
Scheme 1: Synthesis of 3,6-dihydro-2H-pyrans D.
Scheme 2: Addition of lithiated enol ether 1a to nitrone 2c/Et2AlCl.
Scheme 3: Mechanistic proposal for the transformation of syn-4a into cis-5a in the presence of TMSOTf.
Scheme 4: Unsuccessful attempt to cyclize hydroxylamine derivative syn-4f.
Scheme 5: Functionalizations of the enol ether moiety of cis-5a leading to compounds 8–11.
Scheme 6: Transformations of the enol ether moiety of trans-5a leading to products 13–15.
Scheme 7: Bromination of bicyclic dihydropyran trans-5b affording 16.
Scheme 8: Synthesis of epoxypyran 18 by bromination of cis-5d.
Scheme 9: Oxidative cleavage of dihydropyran 19 to lactone 20.
Scheme 10: Transformation of α-bromoketone 15 into nitrone 21 by an internal redox reaction.
Scheme 11: Transformation of α-bromoketone 11 into nitrone 21.
Scheme 12: Synthesis of diastereomeric aminopyrans 24 and 26.
Scheme 13: Synthesis of diastereomeric aminopyrans 28 and 30.
Scheme 14: Synthesis of triamides 31 and 32.
Beilstein J. Org. Chem. 2008, 4, No. 48, doi:10.3762/bjoc.4.48
Graphical Abstract
Scheme 1: Total synthesis of longifolicin by Marshall’s group.
Scheme 2: Total synthesis of corossoline by Tanaka’s group.
Scheme 3: Total synthesis of corossoline by Wu’s group.
Scheme 4: Total synthesis of pseudo-annonacin A by Hanessian’s group.
Scheme 5: Total synthesis of tonkinecin by Wu’s group.
Scheme 6: Total synthesis of gigantetrocin A by Shi’s group.
Scheme 7: Total synthesis of annonacin by Wu’s group.
Scheme 8: Total synthesis of solamin by Kitahara’s group.
Scheme 9: Total synthesis of solamin by Mioskowski’s group.
Scheme 10: Total synthesis of cis-solamin by Makabe’s group.
Scheme 11: Total synthesis of cis-solamin by Brown’s group.
Scheme 12: The formal synthesis of (+)-cis-solamin by Donohoe’s group.
Scheme 13: Total synthesis of cis-solamin by Stark’s group.
Scheme 14: Total synthesis of mosin B by Tanaka’s group.
Scheme 15: Total synthesis of longicin by Hanessian’s group.
Scheme 16: Total synthesis of murisolin and 16,19-cis-murisolin by Tanaka’s group.
Scheme 17: Synthesis of a stereoisomer library of (+)-murisolin by Curran’s group.
Scheme 18: Total synthesis of murisolin by Makabe’s group.
Scheme 19: Total synthesis of reticulatain-1 by Makabe’s group.
Scheme 20: Total synthesis of muricatetrocin C by Ley’s group.
Scheme 21: Total synthesis of (4R,12S,15S,16S,19R,20R,34S)-muricatetrocin (146) and (4R,12R,15S,16S,19R,20R,34S...
Scheme 22: Total synthesis of parviflorin by Hoye’s group.
Scheme 23: Total synthesis of parviflorin by Trost’s group.
Scheme 24: Total synthesis of trilobacin by Sinha’s group.
Scheme 25: Total synthesis of 15-epi-annonin I 181b by Scharf’s group.
Scheme 26: Total synthesis of squamocin A and squamocin D by Scharf’s group.
Scheme 27: Total synthesis of asiminocin by Marshall’s group.
Scheme 28: Total synthesis of asiminecin by Marshall’s group.
Scheme 29: Total synthesis of (+)-(30S)-bullanin by Marshall’s group.
Scheme 30: Total synthesis of uvaricin by the group of Sinha and Keinan.
Scheme 31: Formal synthesis of uvaricin by Burke’s group.
Scheme 32: Total synthesis of trilobin by Marshall’s group.
Scheme 33: Total synthesis of trilobin by the group of Sinha and Keinan.
Scheme 34: Total synthesis of asimilobin by the group of Wang and Shi.
Scheme 35: Total synthesis of squamotacin by the group of Sinha and Keinan.
Scheme 36: Total synthesis of asimicin by Marshall’s group.
Scheme 37: Total synthesis of asimicin by the group of Sinha and Keinan.
Scheme 38: Total synthesis of asimicin by Roush’s group.
Scheme 39: Total synthesis of asimicin by Marshall’s group.
Scheme 40: Total synthesis of 10-hydroxyasimicin by Ley’s group.
Scheme 41: Total synthesis of asimin by Marshall’s group.
Scheme 42: Total synthesis of bullatacin by the group of Sinha and Keinan.
Scheme 43: Total synthesis of bullatacin by Roush’s group.
Scheme 44: Total synthesis of bullatacin by Pagenkopf’s group.
Scheme 45: Total synthesis of rollidecins C and D by the group of Sinha and Keinan.
Scheme 46: Total synthesis of 30(S)-hydroxybullatacin by Marshall’s group.
Scheme 47: Total synthesis of uvarigrandin A and 5(R)-uvarigrandin A by Marshall’s group.
Scheme 48: Total synthesis of membranacin by Brown’s group.
Scheme 49: Total synthesis of membranacin by Lee’s group.
Scheme 50: Total synthesis of rolliniastatin 1 and rollimembrin by Lee’s group.
Scheme 51: Total synthesis of longimicin D by the group of Maezaki and Tanaka.
Scheme 52: Total synthesis of the structure proposed for mucoxin by Borhan’s group.
Scheme 53: Modular synthesis of adjacent bis-THF annonaceous acetogenins by Marshall’s group.
Scheme 54: Total synthesis of 4-deoxygigantecin by Tanaka’s group.
Scheme 55: Total synthesis of squamostatins D by Marshall’s group.
Scheme 56: Total synthesis of gigantecin by Crimmins’s group.
Scheme 57: Total synthesis of gigantecin by Hoye’s group.
Scheme 58: Total synthesis of cis-sylvaticin by Donohoe’s group.
Scheme 59: Total synthesis of 17(S),18(S)-goniocin by Sinha’s group.
Scheme 60: Total synthesis of goniocin and cyclogoniodenin T by the group of Sinha and Keinan.
Scheme 61: Total synthesis of jimenezin by Takahashi’s group.
Scheme 62: Total synthesis of jimenezin by Lee’s group.
Scheme 63: Total synthesis of jimenezin by Hoffmann’s group.
Scheme 64: Total synthesis of muconin by Jacobsen’s group.
Scheme 65: Total synthesis of (+)-muconin by Kitahara’s group.
Scheme 66: Total synthesis of muconin by Takahashi’s group.
Scheme 67: Total synthesis of muconin by the group of Yoshimitsu and Nagaoka.
Scheme 68: Total synthesis of mucocin by the group of Sinha and Keinan.
Scheme 69: Total synthesis of mucocin by Takahashi’s group.
Scheme 70: Total synthesis of (−)-mucocin by Koert’s group.
Scheme 71: Total synthesis of mucocin by the group of Takahashi and Nakata.
Scheme 72: Total synthesis of mucocin by Evans’s group.
Scheme 73: Total synthesis of mucocin by Mootoo’s group.
Scheme 74: Total synthesis of (−)-mucocin by Crimmins’s group.
Scheme 75: Total synthesis of pyranicin by the group of Takahashi and Nakata.
Scheme 76: Total synthesis of pyranicin by Rein’s group.
Scheme 77: Total synthesis of proposed pyragonicin by the group of Takahashi and Nakata.
Scheme 78: Total synthesis of pyragonicin by Rein’s group.
Scheme 79: Total synthesis of pyragonicin by Takahashi’s group.
Scheme 80: Total synthesis of squamostanal A by Figadère’s group.
Scheme 81: Total synthesis of diepomuricanin by Tanaka’s group.
Scheme 82: Total synthesis of (−)-muricatacin [(R,R)-373a] and its enantiomer (+)-muricatacin [(S,S)-373b] by ...
Scheme 83: Total synthesis of epi-muricatacin (+)-(S,R)-373c and (−)-(R,S)-373d by Scharf’s group.
Scheme 84: Total synthesis of (−)-muricatacin 373a and 5-epi-(−)-muricatacin 373d by Uang’s group.
Scheme 85: Total synthesis of four stereoisomers of muricatacin by Yoon’s group.
Scheme 86: Total synthesis of (+)-muricatacin by Figadère’s group.
Scheme 87: Total synthesis of (+)-epi-muricatacin and (−)-muricatacin by Couladouros’s group.
Scheme 88: Total synthesis of muricatacin by Trost’s group.
Scheme 89: Total synthesis of (−)-(4R,5R)-muricatacin by Heck and Mioskowski’s group.
Scheme 90: Total synthesis of muricatacin (−)-373a by the group of Carda and Marco.
Scheme 91: Total synthesis of (−)- and (+)-muricatacin by Popsavin’s group.
Scheme 92: Total synthesis of (−)-muricatacin by the group of Bernard and Piras.
Scheme 93: Total synthesis of (−)-muricatacin by the group of Yoshimitsu and Nagaoka.
Scheme 94: Total synthesis of (−)-muricatacin by Quinn’s group.
Scheme 95: Total synthesis of montecristin by Brückner’s group.
Scheme 96: Total synthesis of (−)-acaterin by the group of Franck and Figadère.
Scheme 97: Total synthesis of (−)-acaterin by Singh’s group.
Scheme 98: Total synthesis of (−)-acaterin by Kumar’s group.
Scheme 99: Total synthesis of rollicosin by Quinn’s group.
Scheme 100: Total synthesis of Rollicosin by Makabe’s group.
Scheme 101: Total synthesis of squamostolide by Makabe’s group.
Scheme 102: Total synthesis of tonkinelin by Makabe’s group.
Beilstein J. Org. Chem. 2008, 4, No. 45, doi:10.3762/bjoc.4.45
Beilstein J. Org. Chem. 2006, 2, No. 11, doi:10.1186/1860-5397-2-11
Graphical Abstract
Scheme 1: Reagents and conditions: i) 1 mol% InCl3, acetonitrile:water (3:1)
Scheme 2: Reagents and conditions: i) 1 mol% InCl3, room temperature