Search for "self-assembling" in Full Text gives 62 result(s) in Beilstein Journal of Organic Chemistry.
Beilstein J. Org. Chem. 2012, 8, 1071–1090, doi:10.3762/bjoc.8.119
Graphical Abstract
Figure 1: Photoisomerization process of azobenzene.
Figure 2: Representative example of an UV spectrum of an azocompound of the azobenzene type (blue line: trans...
Figure 3: Mechanistic proposals for the isomerization of azobenzenes.
Figure 4: Representation of the photocontrol of a K+ channel in the cellular membrane based on the isomerizat...
Figure 5: (a) MAG interaction with iGluR; (b) photocontrol of the opening of the ion channel by trans–cis iso...
Figure 6: Photocontrol of the structure of the α-helix in the polypeptide azoderivative 2. Reprinted (adapted...
Figure 7: Recognition of a guanidinium ion by a cis,cis-bis-azo derivative 3.
Figure 8: Recognition of cesium ions by cis-azo derivative 4.
Figure 9: Photocontrolled formation of an inclusion complex of cyclodextrin trans-azo 5+6.
Figure 10: Pseudorotaxane-based molecular machine.
Figure 11: Molecular hinge. Reprinted (adapted) with permission from Org. Lett. 2004, 6, 2595–2598. Copyright ...
Figure 12: Molecular threader. Reprinted (adapted) with permission from Acc. Chem. Res. 2001, 34, 445–455. Cop...
Figure 13: Molecular scissors based on azobenzene 12. Reprinted (adapted) with permission from J. Am. Chem. So...
Figure 14: Molecular pedals. Reprinted by permission from Macmillan Publishers Ltd: Nature, 2006, 440, 512–515...
Figure 15: Design of nanovehicles based on azo structures. Reprinted (adapted) with permission from Org. Lett. ...
Figure 16: Light-activated mesostructured silica nanoparticles (LAMs).
Figure 17: Molecular lift.
Figure 18: Conformational considerations in mono-ortho-substituted azobenzenes.
Scheme 1: Synthesis and photoisomerization of sulfinyl azobenzenes. Reprinted (adapted) with permission from ...
Figure 19: Photoisomerization of azocompound 22 and its application as a photobase catalyst.
Figure 20: Effect of irradiation with linearly polarized light on azo-LCEs. Reprinted by permission from Macmi...
Figure 21: Chemically and photochemically triggered memory switching cycle of the [2]rotaxane 25.
Figure 22: Unidirectional photoisomerization process of the azobenzene 26.
Beilstein J. Org. Chem. 2012, 8, 349–370, doi:10.3762/bjoc.8.39
Graphical Abstract
Figure 1: Three of the common molecular and supramolecular structural motifs in liquid crystal chemistry: rod...
Figure 2: Schematic representation of the solvent-mediated ligand exchange process, illustrated for the parti...
Figure 3: Chemical structures and LC properties of the rodlike ligands discussed in the text.
Figure 4: Schematic representation of pseudospherical Au NPs coated exclusively with mesogenic rodlike ligand...
Figure 5: TEM images of Au@612 (a) before and (b) after thermal treatment. Below: Proposed model of the nanop...
Figure 6: Ligand deformation at the surface of the gold NPs giving rigid "poles" and a soft equator. Such def...
Figure 7: A simplified illustration of the local rectangular arrangement of nanoparticles in a condensed mixe...
Figure 8: Chemical structures and LC properties of the rodlike ligands discussed in the text.
Figure 9: Schematic drawing of the arrangement of nanoparticles in the columnar phase, as viewed from above (...
Figure 10: The proposed structural models resulting from ligand migration at the NP surface: (a) Smectic (Au@C6...
Figure 11: Reversible migration of the surface ligands as a function of temperature (and phase). Only the blue...
Figure 12: Photochromic and photo-mesogenic rodlike ligands.
Figure 13: Chemical structures and LC properties of side-on mesogens used to coat NPs.
Figure 14: Left: POM image of ligand 12. Right: POM image of Schlieren texture of the hybrid Au@12. Reprinted ...
Figure 15: Threaded nematic texture of Au@ C12/13 as observed by POM at RT. Scale bar = 10 μm. Reprinted with ...
Figure 16: Schematic representation of the gold NP columnar structures. (a) Rhombohedral phase in Au@C12/13 an...
Figure 17:
TEM images of thin films of the phase of Au@C12/13 recorded with the beam (a) parallel to the
pla...
Figure 18: Chemical structures and mesogenic properties of bent-core proto-mesogenic ligands used to coat NPs.
Figure 19: Chemical structures and mesogenic properties of dendritic and proto-dendritic ligands used to coat ...
Figure 20: TEM image showing the arrangement of the hybrid NPs Au@16 into regularly spaced rows. Reprinted wit...
Figure 21: Chemical structures and mesogenic properties of dendritic and proto-dendritic ligands used to coat ...
Figure 22:
Top left: Body-centred (I) cubic lattice of symmetry composed of truncated octahedrons. Top right:...
Figure 23: Model proposed for the organisation of the hybrids within the quasi-nematic mesophase. Reprinted wi...
Figure 24: Mesogenic dendrons used to coat Au NPs.
Figure 25: Chemical structures of the discotic mesogenic ligands used to coat NPs.
Figure 26: TEM images of Au@235,12 prepared from aged solutions stood for 10 days in solutions of (a) 1:1 MeOH...
Figure 27: Some of the various hybrid geometries and packing motifs possible upon ligand grafting to the surfa...
Beilstein J. Org. Chem. 2011, 7, 234–242, doi:10.3762/bjoc.7.31
Graphical Abstract
Figure 1: Structures of three ester derivatives of compound 1.
Figure 2: Structures of ester analogs 5–7 and headgroup 8.
Scheme 1: Synthesis of a series of esters 9A–18C.
Figure 3: Optical micrographs of the gels formed by compound 9A in hexane at 15 mg/mL (A, B), 9B in DMSO/wate...
Figure 4: An ethanol gel formed by compound 18A at <10 mg/mL. a) A clear solution when heated above 70 °C; b)...
Figure 5: Optical micrographs under bright field (a, b) and scanning electron micrograph (c) of the gel forme...
Figure 6: The UV–vis absorption spectra of the polymerized gel formed by compound 18A in ethanol (10 mg/mL): ...
Beilstein J. Org. Chem. 2011, 7, 198–203, doi:10.3762/bjoc.7.26
Graphical Abstract
Scheme 1: Synthetic sequence of amphiphilic dendritic peptides: (i) 1-dodecanol, EDCI, DMAP, dichoromethane, ...
Figure 1: (A) SEM images of the xerogels of G3 from n-hexane (B) magnification of the xerogels structure.
Figure 2: X-ray diffraction patterns of G3 as an organogelator and liquid crystal.
Figure 3: FT-IR of G3 as an organogelator and liquid crystal.
Figure 4: Differential scanning thermograms of ADPs registered during the second heating–cooling cycle with s...
Figure 5: Temperature dependent FT-IR of G3.
Figure 6: . Polarized optical micrographs of G3 at 145 °C (A), 140 °C (B), and 50 °C (C).
Figure 7: X-ray diffraction patterns of G3 at 50 °C.
Beilstein J. Org. Chem. 2010, 6, 973–977, doi:10.3762/bjoc.6.109
Graphical Abstract
Figure 1: Molecular structures of β-Ala-His-EO2-C14 (a) and Gly-Gly-His-EO2-C14 (b).
Figure 2: ATR spectra of β-Ala-His-EO2-C14 in xerogel and D2O hydrogel, respectively.
Figure 3: SAXS profile of concentrated gel of β-Ala-His-EO2-C14 at different temperatures (where S = 2π/q and...
Figure 4: SEM micrographs of β-Ala-His-EO2-C14 hydrogels after drying.
Figure 5: 2D/3D self assembling of β-Ala-His-EO2-C14.
Beilstein J. Org. Chem. 2010, 6, 945–959, doi:10.3762/bjoc.6.106
Graphical Abstract
Scheme 1: Oxalyl retro-dipetide gelators; each b to a, (a) LiOH/MeOH, H2O; (b) H+; each b to c: (c) NH3/MeOH.
Figure 1: Chiral bis(amino acid)-(I) and bis(amino alcohol)-(II)-oxalamide gelators.
Figure 2: TEM images (PWK staining) of: (S,S)-1a H2O/DMSO gel.
Figure 3: TEM images (PWK staining) of: (S,R)-1a H2O/DMSO gel.
Figure 4: TEM images (PWK staining) of: (S,R)-1b toluene gel showing the presence of short tape like aggregat...
Figure 5: The concentration dependence of NH and C*H chemical shifts in (S,R)-1b toluene-d8 gel samples (conc...
Figure 6: The concentration dependence of NH and C*H chemical shifts in (S,S)-1b and its racemate (S,S)-1b/(R...
Figure 7: Temperature dependence of: a) oxalamide NH protons (▲), Leu-NH protons (Δ) and b) oxalamide-α-Leu-C...
Figure 8: Temperature dependent CD spectra of: a) (S,R)-1b decalin gel (c = 3.4·10−2 M); b) (S,S)-1b decalin ...
Figure 9: X-ray powder diffractograms of (a) (S,R)-1b and (b) (S,S)-1b xerogels prepared from their toluene g...
Figure 10: (a) Fully minimized the lowest energy conformations of (S,S)-1b (top) and (S,R)-1b generated by sys...
Figure 11: Schematic presentation of the proposed (S,S)-1b and (S,R)-1b basic packing model based on XRPD, 1H ...
Figure 12: X-ray powder diffraction (XRPD) diagram of (S,R)-1a water/DMSO xerogel.
Beilstein J. Org. Chem. 2010, 6, 859–868, doi:10.3762/bjoc.6.101
Graphical Abstract
Figure 1: Structure of amphiphiles 1–5.
Scheme 1: Synthetic procedure of the amphiphiles.
Figure 2: Variation of the Tgel with concentration of amphiphiles 1 and 2.
Figure 3: (a, b) FESEM images of the dried gels of 1 and 2, respectively at their MGC. (c, d) Two- and three-...
Figure 4: Luminescence spectra of 2 in water (λex = 330 nm) at various concentrations and room temperature.
Figure 5: FTIR spectra of (a) 1 and (b) 2 in CHCl3 solution (dashed line) and in D2O at the gel state (solid ...
Figure 6: 2D-NOESY spectra of 2 (2%, w/v) in DMSO-d6 with 70% water.
Figure 7: XRD diagram of the dried gel of 2.
Figure 8: Schematic representation of the possible arrangement of molecules during hydrogelation of 2.
Figure 9: MTT assay based percent NIH3T3 cell viability as a function of concentration of amphiphile 2.
Beilstein J. Org. Chem. 2010, 6, No. 32, doi:10.3762/bjoc.6.32
Graphical Abstract
Figure 1: Biologically important amines and quaternary ammonium salts: histamine (1), dopamine (2) and acetyl...
Figure 2: Crown ether 18-crown-6.
Figure 3: Conformations of 18-crown-6 (4) in solvents of different polarity.
Figure 4: Binding topologies of the ammonium ion depending on the crown ring size.
Figure 5: A “pseudorotaxane” structure consisting of 24-crown-8 and a secondary ammonium ion (5); R = Ph.
Figure 6: Typical examples of azacrown ethers, cryptands and related aza macrocycles.
Figure 7: Binding of ammonium to azacrown ethers and cryptands [111-113].
Figure 8: A 19-crown-6-ether with decalino blocking groups (11) and a thiazole-dibenzo-18-crown-6-ether (12).
Figure 9: 1,3-Bis(6-oxopyridazin-1-yl)propane derivatives 13 and 14 by Campayo et al.
Figure 10: Fluorescent azacrown-PET-sensors based on coumarin.
Figure 11: Two different pyridino-cryptands (17 and 18) compared to a pyridino-crown (19); chiral ammonium ion...
Figure 12: Pyridino-18-crown-6 ligand (21), a similar acridino-18-crown-6 ligand (22) and a structurally relat...
Figure 13: Ciral pyridine-azacrown ether receptors 24.
Figure 14: Chiral 15-crown-5 receptors 26 and an analogue 18-crown-6 ligand 27 derived from amino alcohols.
Figure 15: C2-symmetric chiral 18-crown-6 amino alcohol derivatives 28 and related macrocycles.
Figure 16: Macrocycles with diamide-diester groups (30).
Figure 17: C2-symmetric chiral aza-18-crown-6 ethers (31) with phenethylamine residues.
Figure 18: Chiral C-pivot p-methoxy-phenoxy-lariat ethers.
Figure 19: Chiral lariat crown ether 34.
Figure 20: Sucrose-based chiral crown ether receptors 36.
Figure 21: Permethylated fructooligosaccharide 37 showing induced-fit chiral recognition.
Figure 22: Biphenanthryl-18-crown-6 derivative 38.
Figure 23: Chiral lariat crown ethers derived from binol by Fuji et al.
Figure 24: Chiral phenolic crown ether 41 with “aryl chiral barriers” and guest amines.
Figure 25: Chiral bis-crown receptor 43 with a meso-ternaphthalene backbone.
Figure 26: Chromogenic pH-dependent bis-crown chemosensor 44 for diamines.
Figure 27: Triamine guests for binding to receptor 44.
Figure 28: Chiral bis-crown phenolphthalein chemosensors 46.
Figure 29: Crown ether amino acid 47.
Figure 30: Luminescent receptor 48 for bis-alkylammonium guests.
Figure 31: Luminescent CEAA (49a), a bis-CEAA receptor for amino acids (49b) and the structure of lysine bindi...
Figure 32: Luminescent CEAA tripeptide for binding small peptides.
Figure 33: Bis crown ether 51a self assembles co-operatively with C60-ammonium ion 51b.
Figure 34: Triptycene-based macrotricyclic dibenzo-[24]-crown-8 ether host 52 and guests.
Figure 35: Copper imido diacetic acid azacrown receptor 53a and the suggested His-Lys binding motif; a copper ...
Figure 36: Urea (54) and thiourea (55) benzo crown receptor for transport and extraction of amino acids.
Figure 37: Crown pyryliums ion receptors 56 for amino acids.
Figure 38: Ditopic sulfonamide bridged crown ether receptor 57.
Figure 39: Luminescent peptide receptor 58.
Figure 40: Luminescent receptor 59 for the detection of D-glucosamine hydrochloride in water/ethanol and lumin...
Figure 41: Guanidinium azacrown receptor 61 for simple amino acids and ditopic receptor 62 with crown ether an...
Figure 42: Chiral bicyclic guanidinium azacrown receptor 63 and similar receptor 64 for the enantioselective t...
Figure 43: Receptors for zwitterionic species based on luminescent CEAAs.
Figure 44: 1,10-Azacrown ethers with sugar podand arms and the anticancer agent busulfan.
Figure 45: Benzo-18-crown-6 modified β-cyclodextrin 69 and β-cyclodextrin functionalized with diaza-18-crown-6...
Figure 46: Receptors for colorimetric detection of primary and secondary ammonium ions.
Figure 47: Porphyrine-crown-receptors 72.
Figure 48: Porphyrin-crown ether conjugate 73 and fullerene-ammonium ion guest 74.
Figure 49: Calix[4]arene (75a), homooxocalix[4]arene (75b) and resorcin[4]arene (75c) compared (R = H, alkyl c...
Figure 50: Calix[4]arene and ammonium ion guest (R = H, alkyl, OAcyl etc.), possible binding sites; A: co-ordi...
Figure 51: Typical guests for studies with calixarenes and related molecules.
Figure 52: Lower rim modified p-tert-butylcalix[5]arenes 82.
Figure 53: The first example of a water soluble calixarene.
Figure 54: Sulfonated water soluble calix[n]arenes that bind ammonium ions.
Figure 55: Displacement assay for acetylcholine (3) with a sulfonato-calix[6]arene (84b).
Figure 56: Amino acid inclusion in p-sulfonatocalix[4]arene (84a).
Figure 57: Calixarene receptor family 86 with upper and lower rim functionalization.
Figure 58: Calix[6]arenes 87 with one carboxylic acid functionality.
Figure 59: Sulfonated calix[n]arenes with mono-substitution at the lower rim systematically studied on their r...
Figure 60: Cyclotetrachromotropylene host (91) and its binding to lysine (81c).
Figure 61: Calixarenes 92 and 93 with phosphonic acids groups.
Figure 62: Calix[4]arene tetraphosphonic acid (94a) and a double bridged analogue (94b).
Figure 63: Calix[4]arene tetraphosphonic acid ester (92c) for surface recognition experiments.
Figure 64: Calixarene receptors 95 with α-aminophosphonate groups.
Figure 65: A bridged homocalix[3]arene 95 and a distally bridged homocalix[4]crown 96.
Figure 66: Homocalix[3]arene ammonium ion receptor 97a and the Reichardt’s dye (97b) for colorimetric assays.
Figure 67: Chromogenic diazo-bridged calix[4]arene 98.
Figure 68: Calixarene receptor 99 by Huang et al.
Figure 69: Calixarenes 100 reported by Parisi et al.
Figure 70: Guest molecules for inclusion in calixarenes 100: DAP × 2 HCl (101a), APA (101b) and Lys-OMe × 2 HC...
Figure 71: Different N-linked peptido-calixarenes open and with glycol chain bridges.
Figure 72: (S)-1,1′-Bi-2-naphthol calixarene derivative 104 published by Kubo et al.
Figure 73: A chiral ammonium-ion receptor 105 based on the calix[4]arene skeleton.
Figure 74: R-/S-phenylalaninol functionalized calix[6]arenes 106a and 106b.
Figure 75: Capped homocalix[3]arene ammonium ion receptor 107.
Figure 76: Two C3 symmetric capped calix[6]arenes 108 and 109.
Figure 77: Phosphorous-containing rigidified calix[6]arene 110.
Figure 78: Calix[6]azacryptand 111.
Figure 79: Further substituted calix[6]azacryptands 112.
Figure 80: Resorcin[4]arene (75c) and the cavitands (113).
Figure 81: Tetrasulfonatomethylcalix[4]resorcinarene (114).
Figure 82: Resorcin[4]arenes (115a/b) and pyrogallo[4]arenes (115c, 116).
Figure 83: Displacement assay for acetylcholine (3) with tetracyanoresorcin[4]arene (117).
Figure 84: Tetramethoxy resorcinarene mono-crown-5 (118).
Figure 85: Components of a resorcinarene based displacement assay for ammonium ions.
Figure 86: Chiral basket resorcin[4]arenas 121.
Figure 87: Resorcinarenes with deeper cavitand structure (122).
Figure 88: Resorcinarene with partially open deeper cavitand structure (123).
Figure 89: Water-stabilized deep cavitands with partially structure (124, 125).
Figure 90: Charged cavitands 126 for tetralkylammonium ions.
Figure 91: Ditopic calix[4]arene receptor 127 capped with glycol chains.
Figure 92: A calix[5]arene dimer for diammonium salt recognition.
Figure 93: Calixarene parts 92c and 129 for the formation molecular capsules.
Figure 94: Encapsulation of a quaternary ammonium cation by two resorcin[4]arene molecules (NMe4+@[75c]2 × Cl−...
Figure 95: Encapsulation of a quaternary ammonium cation by six resorcin[4]arene molecules (NMe3D+@[130]6 × Cl−...
Figure 96: Structure and schematic of cucurbit[6]uril (CB[6], 131a).
Figure 97: Cyclohexanocucurbit[6]uril (CB′[6], 132) and the guest molecule spermine (133).
Figure 98: α,α,δ,δ-Tetramethylcucurbit[6]uril (134).
Figure 99: Structure of the cucurbituril-phthalhydrazide analogue 135.
Figure 100: Organic cavities for the displacement assay for amine differentiation.
Figure 101: Displacement assay methodology for diammonium- and related guests involving cucurbiturils and some ...
Figure 102: Nor-seco-Cucurbituril (±)-bis-ns-CB[6] (140) and guest molecules.
Figure 103: The cucurbit[6]uril based complexes 141 for chiral discrimination.
Figure 104: Cucurbit[7]uril (131c) and its ferrocene guests (142) opposed.
Figure 105: Cucurbit[7]uril (131c) guest inclusion and representative guests.
Figure 106: Cucurbit[7]uril (131c) binding to succinylcholine (145) and different bis-ammonium and bis-phosphon...
Figure 107: Paraquat-cucurbit[8]uril complex 149.
Figure 108: Gluconuril-based ammonium receptors 150.
Figure 109: Examples of clefts (151a), tweezers (151b, 151c, 151d) and clips (151e).
Figure 110: Kemp’s triacid (152a), on example of Rebek’s receptors (152b) and guests.
Figure 111: Amino acid receptor (154) by Rebek et al.
Figure 112: Hexagonal lattice designed hosts by Bell et al.
Figure 113: Bell’s amidinium receptor (156) and the amidinium ion (157).
Figure 114: Aromatic phosphonic acids.
Figure 115: Xylene phosphonates 159 and 160a/b for recognition of amines and amino alcohols.
Figure 116: Bisphosphonate recognition motif 161 for a colorimetric assay with alizarin complexone (163) for ca...
Figure 117: Bisphosphonate/phosphate clip 164 and bisphosphonate cleft 165.
Figure 118: N-Methylpyrazine 166a, N-methylnicotinamide iodide (166b) and NAD+ (166c).
Figure 119: Bisphosphate cavitands.
Figure 120: Bisphosphonate 167 of Schrader and Finocchiaro.
Figure 121: Tweezer 168 for noradrenaline (80b).
Figure 122: Different tripods and heparin (170).
Figure 123: Squaramide based receptors 172.
Figure 124: Cage like NH4+ receptor 173 of Kim et al.
Figure 125: Ammonium receptors 174 of Chin et al.
Figure 126: 2-Oxazolin-based ammonium receptors 175a–d and 176 by Ahn et al.
Figure 127: Racemic guest molecules 177.
Figure 128: Tripods based on a imidazole containing macrocycle (178) and the guest molecules employed in the st...
Figure 129: Ammonium ion receptor 180.
Figure 130: Tetraoxa[3.3.3.3]paracyclophanes 181 and a cyclophanic tetraester (182).
Figure 131: Peptidic bridged paraquat-cyclophane.
Figure 132: Shape-selective noradrenaline host.
Figure 133: Receptor 185 for binding of noradrenaline on surface layers from Schrader et al.
Figure 134: Tetraphosphonate receptor for binding of noradrenaline.
Figure 135: Tetraphosphonate 187 of Schrader and Finocchiaro.
Figure 136: Zinc-Porphyrin ammonium-ion receptors 188 and 189 of Mizutani et al.
Figure 137: Zinc porphyrin receptor 190.
Figure 138: Zinc porphyrin receptors 191 capable of amino acid binding.
Figure 139: Zinc-porphyrins with amino acid side chains for stereoinduction.
Figure 140: Bis-zinc-bis-porphyrin based on Tröger’s base 193.
Figure 141: BINAP-zinc-prophyrin derivative 194 and it’s guests.
Figure 142: Bisaryl-linked-zinc-porphyrin receptors.
Figure 143: Bis-zinc-porphyrin 199 for diamine recognition and guests.
Figure 144: Bis-zinc-porphyrin crown ether 201.
Figure 145: Bis-zinc-porphyrin 202 for stereodiscrimination (L = large substituent; S = small substituent).
Figure 146: Bis-zinc-porphyrin[3]rotaxane and its copper complex and guests.
Figure 147: Dien-bipyridyl ligand 206 for co-ordination of two metal atoms.
Figure 148: The ligand and corresponding tetradentate co-complex 207 serving as enantioselective receptor for a...
Figure 149: Bis(oxazoline)–copper(II) complex 208 for the recognition of amino acids in aqueous solution.
Figure 150: Zinc-salen-complexes 209 for the recognition tertiary amines.
Figure 151: Bis(oxazoline)–copper(II) 211 for the recognition of amino acids in aqueous solution.
Figure 152: Zn(II)-complex of a C2 terpyridine crown ether.
Figure 153: Displacement assay and receptor for aspartate over glutamate.
Figure 154: Chiral complex 214 for a colorimetric displacement assay for amino acids.
Figure 155: Metal complex receptor 215 with tripeptide side arms.
Figure 156: A sandwich complex 216 and its displaceable dye 217.
Figure 157: Lanthanide complexes 218–220 for amino acid recognition.
Figure 158: Nonactin (221), valinomycin (222) and vancomycin (223).
Figure 159: Monesin (224a) and a chiral analogue for enantiodiscrimination of ammonium guests (224b).
Figure 160: Chiral podands (226) compared to pentaglyme-dimethylether (225) and 18-crown-6 (4).
Figure 161: Lasalocid A (228).
Figure 162: Lasalocid derivatives (230) of Sessler et al.
Figure 163: The Coporphyrin I tetraanion (231).
Figure 164: Linear and cyclic peptides for ammonium ion recognition.
Figure 165: Cyclic and bicyclic depsipeptides for ammonium ion recognition.
Figure 166: α-Cyclodextrin (136a) and novocaine (236).
Figure 167: Helical diol receptor 237 by Reetz and Sostmann.
Figure 168: Ammonium binding spherand by Cram et al. (238a) and the cyclic[6]metaphenylacetylene 238b in compar...
Figure 169: Receptor for peptide backbone and ammonium binding (239).
Figure 170: Anion sensor principle with 3-hydroxy-2-naphthanilide of Jiang et al.
Figure 171: 7-bromo-3-hydroxy-N-(2-hydroxyphenyl)naphthalene 2-carboxamide (241) and its amine binding.
Figure 172: Naturally occurring catechins with affinity to quaternary ammonium ions.
Figure 173: Spiropyran (244) and merocyanine form (244a) of the amino acid receptors of Fuji et al.
Figure 174: Coumarin aldehyde (245) and its iminium species with amino acid bound (245a) by Glass et al.
Figure 175: Coumarin aldehyde appended with boronic acid.
Figure 176: Quinolone aldehyde dimers by Glass et al.
Figure 177: Chromogenic ammonium ion receptors with trifluoroacetophenone recognition motifs.
Figure 178: Chromogenic ammonium ion receptor with trifluoroacetophenone recognition motif bound on different m...
Beilstein J. Org. Chem. 2010, 6, No. 6, doi:10.3762/bjoc.6.6
Graphical Abstract
Scheme 1: AlCl3-mediated reaction between amyl chloride and benzene as developed by Friedel and Crafts.
Figure 1: Most often used metal salts for catalytic FC alkylations and hydroarylations of arenes.
Figure 2: 1,1-diarylalkanes with biological activity.
Scheme 2: Alkylating reagents and side products produced.
Scheme 3: Initially reported TeCl4-mediated FC alkylation of 1-penylethanol with toluene.
Scheme 4: Sc(OTf)3-catalyzed FC benzylation of arenes.
Scheme 5: Reductive FC alkylation of arenes with arenecarbaldehydes.
Scheme 6: Iron(III)-catalyzed FC benzylation of arenes and heteroarenes.
Scheme 7: A gold(III)-catalyzed route to beclobrate.
Scheme 8: Catalytic FC-type alkylations of 1,3-dicarbonyl compounds.
Scheme 9: Iron(III)-catalyzed synthesis of phenprocoumon.
Scheme 10: Bi(OTf)3-catalyzed FC alkylation of benzyl alcohols developed by Rueping et al.
Scheme 11: (A) Bi(OTf)3-catalyzed intramolecular FC alkylation as an efficient route to substituted fulvenes. ...
Scheme 12: FC-type glycosylation of 1,2-dimethylindole and trimethoxybenzene.
Scheme 13: FC alkylation with highly reactive ferrocenyl- and benzyl alcohols. The reaction proceeds even with...
Scheme 14: Reductive FC alkylation of arenes with benzaldehyde and acetophenone catalyzed by the Ir-carbene co...
Scheme 15: Formal synthesis of 1,1-diarylalkanes from benzyl alcohols and styrenes.
Scheme 16: (A) Mo-catalyzed hydroarylation of styrenes and cyclohexenes. (B) Hydroalkylation–cyclization casca...
Scheme 17: Bi(III)-catalyzed hydroarylation of styrenes with arenes and heteroarenes.
Scheme 18: BiCl3-catalyzed ene/FC alkylation reaction cascade – A fast access to highly arylated dihydroindene...
Scheme 19: Au(I)/Ag(I)-catalyzed hydroarylation of indoles with styrenes, aliphatic and cyclic alkenes.
Scheme 20: First transition-metal-catalyzed ortho-hydroarylation developed by Beller et al.
Scheme 21: (A) Ti(IV)-mediated rearrangement of an N-benzylated aniline to the corresponding ortho-alkylated a...
Scheme 22: Dibenzylation of aniline gives potentially useful amine-based ligands in a one-step procedure.
Scheme 23: FC-type alkylations with allyl alcohols as alkylating reagents – linear vs. branched product format...
Scheme 24: (A) First catalytic FC allylation and cinnamylation using allyl alcohols and its derivatives. (B) E...
Scheme 25: FC allylation/cyclization reaction yielding substituted chromanes.
Scheme 26: Synthesis of (all-rac)-α-tocopherol utilizing Lewis- and strong Brønsted-acids.
Scheme 27: Au(III)-catalyzed cinnamylation of arenes.
Scheme 28: “Exhaustive” allylation of benzene-1,3,5-triol.
Scheme 29: Palladium-catalyzed allylation of indole.
Scheme 30: Pd-catalyzed synthesis of pyrroloindoles from L-tryptophane.
Scheme 31: Ru(IV)-catalyzed allylation of indole and pyrroles with unique regioselectivity.
Scheme 32: Silver(I)-catalyzed intramolecular FC-type allylation of arenes and heteroarenes.
Scheme 33: FC-type alkylations of arenes using propargyl alcohols.
Scheme 34: (A) Propargylation of arenes with stoichiometric amounts of the Ru-allenylidene complex 86. (B) Fir...
Scheme 35: Diruthenium-catalyzed formation of chromenes and 1H-naphtho[2,1-b]pyrans.
Scheme 36: Rhenium(V)-catalyzed FC propargylations as a first step in the total synthesis of podophyllotoxin, ...
Scheme 37: Scandium-catalyzed arylation of 3-sulfanyl- and 3-selanylpropargyl alcohols.
Scheme 38: Synthesis of 1,3-diarylpropynes via direct coupling of propargyl trichloracetimidates and arenes.
Scheme 39: Diastereoselective substitutions of benzyl alcohols.
Scheme 40: (A) First diastereoselective FC alkylations developed by Bach et al. (B) anti-Selective FC alkylati...
Scheme 41: Diastereoselective AuCl3-catalyzed FC alkylation.
Scheme 42: Bi(OTf)3-catalyzed alkylation of α-chiral benzyl acetates with silyl enol ethers.
Scheme 43: Bi(OTf)3-catalyzed diastereoselective substitution of propargyl acetates.
Scheme 44: Nucelophilic substitution of enantioenriched ferrocenyl alcohols.
Scheme 45: First catalytic enantioselective propargylation of arenes.
Beilstein J. Org. Chem. 2010, 6, No. 3, doi:10.3762/bjoc.6.3
Graphical Abstract
Figure 1: Self-assembly of zwitterion 1 to give dimer 1·1 and self-assembly of zwitterion 2 to give dimer 2·2...
Scheme 1: Synthesis of zwitterion 2.
Scheme 2: Synthesis of compound 2·H+.
Figure 2: 1H NMR spectra of zwitterion 2 (bottom) and its protonated form 2·H+ (top).
Figure 3: Part of the 1H NMR spectrum of 2 in [D6]DMSO showing the complexation-induced shifts of the indole ...
Figure 4: Representative binding isotherm of the aromatic proton d (left) and the indole NH proton (right).
Figure 5: Binding isotherm of the guanidinium NH2 protons.
Figure 6: Crystal structure of dimer 2·2 with hydrogen bond distances (Å) and dihedral angles.
Figure 7: Side view of dimer 2·2 in the solid state.
Figure 8: Part of the crystal lattice of zwitterion 2.
Scheme 3: An attractive H-bond in 1 (left) is replaced by a repulsive steric interaction in 2 (right).
Figure 9: Energy-minimized structure for dimer 2·2 with hydrogen bond distances (Å) and dihedral angles.
Beilstein J. Org. Chem. 2009, 5, No. 54, doi:10.3762/bjoc.5.54
Graphical Abstract
Figure 1: Molecular structure of NIRPAC: a Pd(II) complex based on Nile red and a curcumin derivative.
Figure 2: Molecular structure of Pd(II) complexes based on functionalised 2-phenylquinolines and β-diketonate...
Figure 3: Some unusual palladiomesogens based on 3,5-disubstituted-2,2′-pyridylpyrroles and β-diketonates.
Figure 4: Molecular structure of Pt(II) complexes based on 4,4′-disubstituted 2,2′-bipyridines.
Figure 5: Molecular structure of Zn(II) complexes based on polycatenar 4,4′-disubstituted 2,2′-bipyridines.
Figure 6: Molecular structure of a gallium(III) mesogen.
Beilstein J. Org. Chem. 2008, 4, No. 11, doi:10.3762/bjoc.4.11