Search for "indoline" in Full Text gives 81 result(s) in Beilstein Journal of Organic Chemistry.
Beilstein J. Org. Chem. 2013, 9, 313–322, doi:10.3762/bjoc.9.36
Graphical Abstract
Scheme 1: Intermolecular carbolithiation.
Scheme 2: Carbolithiation of cinnamyl and dienyl derivatives.
Scheme 3: Carbolithiation of cinnamyl alcohol.
Scheme 4: Carbolithiation of styrene derivatives.
Scheme 5: Carbolithiation of α-aryl O-alkenyl carbamates.
Scheme 6: Carbolithiation-rearrangement of N-alkenyl-N-arylureas.
Scheme 7: Carbolithiation of N,N-dimethylaminofulvene.
Scheme 8: Carbolithiation of enynes.
Scheme 9: Intramolecular carbolithiation.
Scheme 10: Carbolithiation of 5-alkenylcarbamates.
Scheme 11: Carbolithiation of cinnamylpiperidines.
Scheme 12: Carbolithiation of alkenylpyrrolidines.
Scheme 13: Enantioselective carbolithiation of N-allyl-2-bromoanilines.
Scheme 14: Effect of the ligand in the carbolithiation reaction.
Scheme 15: Effect of the alkene substitution in the carbolithiation reaction.
Scheme 16: Effect of the ring substitution in the carbolithiation reaction.
Scheme 17: Enantioselective carbolithiation of allyl aryl ethers.
Scheme 18: Formation of six-membered rings: pyrroloisoquinolines.
Scheme 19: Formation of six-membered rings: tetrahydroquinolines.
Beilstein J. Org. Chem. 2013, 9, 8–14, doi:10.3762/bjoc.9.2
Graphical Abstract
Scheme 1: The four-component reactions containing dimedone (a) and cyclopentane-1,3-dione (b).
Figure 1: Molecular structure of spiro[dihydropyridine-oxindole] 1b.
Figure 2: The two kinds of spiro compounds from reactions of isatins with arylamines and cyclic 1,3-diketones....
Figure 3: Molecular structure of spiro[dihydropyridine-oxindole] 2f.
Scheme 2: Condensation reactions of isatins with cyclopentane-1,3-dione.
Figure 4: Molecular structure of compound 3d.
Scheme 3: Proposed reaction mechanism for the three-component reaction.
Beilstein J. Org. Chem. 2012, 8, 1374–1384, doi:10.3762/bjoc.8.159
Graphical Abstract
Scheme 1: Triflic acid-catalysed synthesis of cyclic aminals.
Scheme 2: PTSA-catalysed synthesis of cyclic aminals.
Scheme 3: Plausible mechanism for cyclic aminal synthesis.
Scheme 4: Annulation cascade reaction with double nucleophiles.
Scheme 5: Mechanism for the indole-annulation cascade reaction.
Scheme 6: Synthesis of N-alkylpyrroles and δ-hydroxypyrroles.
Scheme 7: Synthesis of N-alkylindoles 9 and N-alkylindolines 10.
Scheme 8: Mechanistic study for the N-alkylpyrrole formation.
Scheme 9: Benzoic acid catalysed decarboxylative redox amination.
Scheme 10: Organocatalytic redox reaction of ortho-(dialkylamino)cinnamaldehydes.
Scheme 11: Mechanism for aminocatalytic redox reaction of ortho-(dialkylamino)cinnamaldehydes.
Scheme 12: Asymmetric synthesis of tetrahydroquinolines having gem-methyl ester groups.
Scheme 13: Asymmetric synthesis of tetrahydroquinolines from chiral substrates 18.
Scheme 14: Organocatalytic biaryl synthesis by Kwong, Lei and co-workers.
Scheme 15: Organocatalytic biaryl synthesis by Shi and co-workers.
Scheme 16: Organocatalytic biaryl synthesis by Hayashi and co-workers.
Scheme 17: Proposed mechanism for organocatalytic biaryl synthesis.
Beilstein J. Org. Chem. 2011, 7, 1075–1094, doi:10.3762/bjoc.7.124
Graphical Abstract
Scheme 1: AuCl3-catalyzed benzannulations reported by Yamamoto.
Scheme 2: Synthesis of 9-oxabicyclo[3.3.1]nona-4,7-dienes from 1-oxo-4-oxy-5-ynes [40].
Scheme 3: Stereocontrolled oxacyclization/(4 + 2)-cycloaddition cascade of ketone–allene substrates [43].
Scheme 4: Gold-catalyzed synthesis of polycyclic, fully substituted furans from 1-(1-alkynyl)cyclopropyl keto...
Scheme 5: Gold-catalyzed 1,3-dipolar cycloaddition of 2-(1-alkynyl)-2-alken-1-ones with nitrones [47].
Scheme 6: Enantioselective 1,3-dipolar cycloaddition of 2-(1-alkynyl)-2-alken-1-ones with nitrones [48].
Scheme 7: Gold-catalyzed 1,3-dipolar cycloaddition of 2-(1-alkynyl)-2-alken-1-ones with α,β-unsaturated imine...
Scheme 8: Gold-catalyzed (4 + 3) cycloadditions of 1-(1-alkynyl)oxiranyl ketones [50].
Scheme 9: (3 + 2) Cycloaddition of gold-containing azomethine ylides [52].
Scheme 10: Gold-catalyzed generation and reaction of azomethine ylides [53].
Scheme 11: Gold-catalyzed intramolecular (4 + 2) cycloadditions of unactivated alkynes and dienes [55].
Scheme 12: Gold-catalyzed preparation of bicyclo[4.3.0]nonane derivatives from dienol silyl ethers [59].
Scheme 13: Gold(I)-catalyzed intramolecular (4 + 2) cycloadditions of arylalkynes or 1,3-enynes with alkenes [60].
Scheme 14: Gold(I)-catalyzed intermolecular (2 + 2) cycloaddition of alkynes with alkenes [62].
Scheme 15: Metal-catalyzed cycloaddition of alkynes tethered to cycloheptatriene [65].
Scheme 16: Gold-catalyzed cycloaddition of functionalized ketoenynes: Synthesis of (+)-orientalol F [68].
Scheme 17: Gold-catalyzed intermolecular cyclopropanation of enynes with alkenes [70].
Scheme 18: Gold-catalyzed intermolecular hetero-dehydro Diels–Alder cycloaddition [72].
Figure 1: Gold-catalyzed 1,2- or 1,3-acyloxy migrations of propargyl esters.
Scheme 19: Gold(I)-catalyzed stereoselective olefin cyclopropanation [74].
Scheme 20: Reaction of propargylic benzoates with α,β-unsaturated imines to give azepine cycloadducts [77].
Scheme 21: Gold-catalyzed (3 + 3) annulation of azomethine imines with propargyl esters [81].
Scheme 22: Gold(I)-catalyzed isomerization of 5-en-2-yn-1-yl acetates [83].
Scheme 23: (3 + 2) and (2 + 2) cycloadditions of indole-3-acetates 41 [85,86].
Scheme 24: Gold(I)-catalyzed (2 + 2) cycloaddition of allenenes [87].
Scheme 25: Formal (3 + 2) cycloaddition of allenyl MOM ethers and alkenes [90].
Scheme 26: (4 + 3) Cycloadditions of allenedienes [97,98].
Scheme 27: Gold-catalyzed transannular (4 + 3) cycloaddition reactions [101].
Scheme 28: Gold(I)-catalyzed (4 + 2) cycloadditions of allenedienes [102].
Scheme 29: Enantioselective gold(I)-catalyzed (4 + 2) cycloadditions of allenedienes [88,102,104].
Scheme 30: (3 + 2) versus (2 + 2) Cycloadditions of allenenes [87,99].
Figure 2: NHC ligands with different π-acceptor properties [106].
Scheme 31: (3 + 2) versus (2 + 2) Cycloadditions of allenenes [106].
Scheme 32: Gold(I)-catalyzed intermolecular (4 + 2) cycloaddition of allenamides and acyclic dienes [109].
Beilstein J. Org. Chem. 2009, 5, No. 33, doi:10.3762/bjoc.5.33
Graphical Abstract
Scheme 1: Aziridine containing natural products.
Scheme 2: Mitomycin structures and nomenclature.
Scheme 3: Base catalysed epimerization of mitomycin B.
Scheme 4: Biosynthesis of mitomycin C (MMC) 7.
Scheme 5: Mode of action of mitomycin C.
Scheme 6: The N–C3–C9a disconnection.
Scheme 7: Danishefsky’s Retrosynthesis of mitomycin K.
Scheme 8: Hetero Diels–Alder reaction en route to mitomycins.
Scheme 9: Nitroso Diels–Alder cycloaddition.
Scheme 10: Frank azide cycloadddition.
Scheme 11: Final steps of mitomycin K synthesis. aPDC, DCM; bPhSCH2N3, PhH, 80 °C; cL-selectride, THF, −78 °C; ...
Scheme 12: Naruta–Maruyama retrosynthesis.
Scheme 13: Synthesis of a leucoaziridinomitosane by nitrene cycloaddition. aAlCl3-Et2O; bNaH, ClCH2OMe; cn-BuL...
Scheme 14: Thermal decomposition of azidoquinone 51.
Scheme 15: Diastereoselectivity during the cycloaddition.
Scheme 16: Oxidation with iodo-azide.
Scheme 17: Williams’ approach towards mitomycins.aDEIPSCl, Imidazole, DCM; bPd/C, HCO2NH4, MeOH; cAllocCl, NaH...
Scheme 18: Synthesis of pyrrolidones by homoconjugate addition.
Scheme 19: Homoconjugate addition on the fully functionalized substrate.
Scheme 20: Introduction of the olefin.
Scheme 21: Retrosynthesis of N–C9a, N–C3 bond formation.
Scheme 22: Synthesis of the pyrrolo[1,2]indole 82 using N-PSP activation.aAc2O, Py; bAc2O, Hg(OAc)2, AcOH, 90%...
Scheme 23: Synthesis of an aziridinomitosane. am-CPBA, DCM then iPr2NH, CCl4 reflux; bK2CO3, MeOH; cBnBr, KH; d...
Scheme 24: Oxidation products of a leucoaziridinomitosane obtained from a Polonovski oxidation.
Scheme 25: Polonovski oxidation of an aziridinomitosane. am-CPBA; bPd/C, H2; cDimethoxypropane, PPTS.
Scheme 26: The C1–C9a disconnection.
Scheme 27: Ziegler synthesis of desmethoxymitomycin A.aIm2C=O, THF; bNH3; cTMSOTf, 2,6-di-tert-butylpyridine, ...
Scheme 28: Transformation of sodium erythorbate.aTBDMSCl; bNaN3; cPPh3; d(Boc)2O, DMAP; eTBAF; fTf2O, Pyr.
Scheme 29: Formation of C9,C10-unsaturation in the mitomycins. am-CPBA, DCM; bO3, MeOH; cMe2S; dKHMDS, (EtO)3P...
Scheme 30: Fragmentation mechanism.
Scheme 31: Michael addition-cyclisation.
Scheme 32: SmI2 8-endo-dig cyclisation.
Scheme 33: Synthesis of pyrrolo[1,2-a]indole by 5-exo-dig radical cyclization.
Scheme 34: The C9–C9a disconnection.
Scheme 35: Intramolecular nitrile oxide cycloaddition.
Scheme 36: Regioselectivity of the INOC.
Scheme 37: Fukuyama’s INOC strategy.
Scheme 38: Synthesis of a mitosane core by rearrangement of a 1-(1-pyrrolidinyl)-1,3-butadiene.
Scheme 39: Sulikowski synthesis of an aziridinomitosene. aPd(Tol3P)2Cl2, Bu3SnF, 140; bH2, Pd/C; cTFAA, Et3N; d...
Scheme 40: Enantioselective carbene insertion.
Scheme 41: Parson’s radical cyclization.
Scheme 42: Cha’s mitomycin B core synthesis.
Scheme 43: The N-aromatic disconnection.
Scheme 44: Kishi retrosynthesis.
Scheme 45: Kishi synthesis of a starting material. aallyl bromide, K2CO3, acetone, reflux; bN,N-Dimethylanilin...
Scheme 46: Kishi synthesis of MMC 7. aLDA, THF, −78 °C then PhSeBr, THF, −78 °C; bH2O2, THF-EtOAc; cDIBAL, DCM...
Scheme 47: Acid catalyzed degradation of MMC 7.
Scheme 48: In vivo formation of apomitomycin B.
Scheme 49: Advanced intermediate for apomitomycin B synthesis.
Scheme 50: Remers synthesis of a functionalized mitosene. aTMSCl, Et3N, ZnCl2 then NBS; bAcOK; cNH2OH; dPd/C, H...
Scheme 51: Coleman synthesis of desmethoxymitomycin A. aSnCl2, PhSH, Et3N, CH3CN; bClCO2Bn, Et3N; cPPh3, DIAD,...
Scheme 52: Transition state and pyrrolidine synthesis.
Scheme 53: Air oxidation of mitosanes and aziridinomitosanes.
Scheme 54: The C9-aromatic disconnection.
Scheme 55: Synthesis of the aziridine precursor. aLHMDS, THF; bNaOH; c(s)-α-Me-BnNH2, DCC, HOBT; dDIBAL; eK2CO3...
Scheme 56: Synthesis of 206 via enamine conjugate addition.
Scheme 57: Rapoport synthesis of an aziridinomitosene.
Scheme 58: One pot synthesis of a mitomycin analog.
Scheme 59: Synthesis of compound 218 via intramolecular Heck coupling. aEtMgCl, THF, then 220; bMsCl, Et3N; cN...
Scheme 60: Elaboration of indole 223. aEt3N, Ac2O; bAcOH; cSOCl2, Et3N; dNaN3, DMF; eH2SO4, THF; fK2CO3, MeOH; ...
Scheme 61: C9-C9a functionalization from indole.
Scheme 62: Synthesis of mitomycin K. a2 equiv. MoO5.HMPA, MeOH; bPPh3, Et3N, THF-H2O; cMeOTf, Py, DCM; dMe3SiCH...
Scheme 63: Configurational stability of mitomycin K derivatives.
Scheme 64: Epimerization of carbon C9a in compound 227b.
Scheme 65: Corey–Chaykovsky synthesis of indol 235.
Scheme 66: Cory intramolecular aza-Darzens reaction for the formation of aziridinomitosene 239.
Scheme 67: Jimenez synthesis of aziridinomitosene 242.
Scheme 68: Von Braun opening of indoline 244.
Scheme 69: C9a oxidation of an aziridinomitosane with DDQ/OsO4.
Scheme 70: Synthesis of epi-mitomycin K. aNaH, Me2SO4; bH2, Pd/C; cMitscher reagent [165]; d[(trimethylsilyl)methyl...
Scheme 71: Mitomycins rearrangement.
Scheme 72: Fukuyama’s retrosynthesis.
Scheme 73: [2+3] Cycloaddition en route to isomitomycin A. aToluene, 110 °C; bDIBAL, THF, −78 °C; cAc2O, Py.; d...
Scheme 74: Final steps of Fukuyama’s synthesis.
Scheme 75: “Crisscross annulation”.
Scheme 76: Synthesis of 274; the 8-membered ring 274 was made using a crisscross annulation. a20% Pd(OH)2/C, H2...
Scheme 77: Conformational analysis of compound 273 and 275.
Scheme 78: Synthesis of a mitomycin analog. aNa2S2O4, H2O, DCM; bBnBr (10 equiv), K2CO3, 18-crown-6 (cat.), TH...
Scheme 79: Vedejs retrosynthesis.
Scheme 80: Formation of the azomethine ylide.
Scheme 81: Vedejs second synthesis of an aziridinomitosene. aDIBAL; bTPAP, NMO; c287; dTBSCl, imidazole.
Scheme 82: Trityl deprotection and new aziridine protecting group 300.
Scheme 83: Ene reaction towards benzazocinones.
Scheme 84: Benzazocenols via homo-Brook rearrangement.
Scheme 85: Pt-catalyzed [3+2] cycloaddition.
Scheme 86: Carbonylative lactamization entry to benzazocenols. aZn(OTf)2, (+)-N-methylephedrine, Et3N, TMS-ace...
Scheme 87: 8 membered ring formation by RCM. aBOC2O, NaHCO3; bTBSCl, Imidazole, DMF; callyl bromide, NaH, DMF; ...
Scheme 88: Aziridinomitosene synthesis. aTMSN3; bTFA; cPOCl3, DMF; dNaClO2, NaH2PO4, 2-methyl-2-butene; eMeI, ...
Scheme 89: Metathesis from an indole.
Scheme 90: Synthesis of early biosynthetic intermediates of mitomycins.
Beilstein J. Org. Chem. 2009, 5, No. 1, doi:10.3762/bjoc.5.1
Graphical Abstract
Scheme 1: Aza- and thia-substituted electron donors.
Scheme 2: Radical-polar crossover reaction of arenediazonium salts by TTF.
Scheme 3: Studies on the reductive radical cyclization of arenediazonium salt 16 by TDAE.
Scheme 4: Preparation of the arenediazonium salts 31a–d. Reagents and conditions: (a) 23, NaH, THF, 0 °C, 0.5...
Scheme 5: Cascade radical cyclizations of arenediazonium salts 42 and 44 by TDAE. Reagents and conditions: (a...
Scheme 6: TDAE-mediated radical based addition-elimination route to indoles.
Scheme 7: Cyclization of the arenediazonium salts 49b–d by TDAE. Reagents and conditions: (a) NOBF4, CH2Cl2, ...
Scheme 8: Cyclization of the arenediazonium salt 62 by TDAE. Reagents and conditions: (a) 2-Nitrobenzenesulfo...
Scheme 9: Mechanism for the formation of the tetracyclic sulfonamide 65.
Scheme 10: Possible mechanism for the formation of indole (63) and indole sulfonamide 64.