Search for "Pseudomonas" in Full Text gives 106 result(s) in Beilstein Journal of Organic Chemistry.
Beilstein J. Org. Chem. 2011, 7, 678–698, doi:10.3762/bjoc.7.80
Graphical Abstract
Figure 1: Investigated derivatives.
Figure 2: Modifications of uracil ring.
Figure 3: 5-(3,3,3-Trifluoro-1-methoxypropyl)-2'-deoxyuridine (1).
Scheme 1: Synthesis of 5-(3,3,3-trifluoro-1-methoxypropyl)-2'-deoxyuridine (1) and 5-(3,3,3-trifluoro-1-(2-pr...
Scheme 2: Synthesis of 5-(3,3,3-trifluoro-1-methoxyprop-1-yl)-5,6-dihydro-2'-deoxyuridine (8).
Scheme 3: Synthesis of 5-(methoxy-2-haloethyl)-2'-deoxyuridines 12 and 13.
Scheme 4: Synthesis of 5-(1-methoxy-2-iodoethyl) nucleosides 28–30.
Figure 4: [125I] radiolabelled 5-(1-methoxy-2-iodoethyl)-2'-deoxyuridine 31.
Scheme 5: Synthesis of 5-(1-alkoxy-2-iodoethyl) 34–36 and 5-(1-ethoxy-2,2-diiodoethyl)-2'-deoxyuridine (33).
Scheme 6: Synthesis of 5-(1-methoxy-2-iodoethyl)-3',5'-di-O-acetyl-2'-deoxyuridine (38) and 5-(1-ethoxy-2-iod...
Figure 5: 5-(1-Hydroxy(or ethoxy)-2-haloethyl)-3',5'-di-O-acetyl-2'-deoxyuridines 43–46.
Scheme 7: 5-(1-Methoxy-2,2-dihaloethyl)-2'-deoxyuridines 47–49.
Scheme 8: Synthesis of 5-[1-(2-haloethyl(or nitro)ethoxy)-2-iodoethyl]-2'-deoxyuridines 50–54.
Scheme 9: Synthesis of alkoxyuracil analogues 56–61.
Figure 6: 5-(Methoxy-2-haloethyl)uracils 62–64.
Scheme 10: Synthesis of perfluoro derivatives 70–74.
Scheme 11: Synthesis of 1-β-D-arabinofuranosyl-5-(1-methoxy-2-iodoethyl)uracil (79).
Scheme 12: Synthesis of 1-β-D-arabinofuranosyl-5-(2,2-dibromo-1-methoxyethyl)uracil 82 and uridine analogue 83....
Scheme 13: Synthesis of methoxy derivative 87.
Scheme 14: Synthesis of 5-(1-methoxy-2-azidoethyl)-2'-deoxyuridine (93).
Scheme 15: Synthesis of methoxyalkyl derivatives 96 and 97.
Scheme 16: Synthesis of 5-(1-methoxyethyl)-2'-deoxyuridine (100).
Scheme 17: Synthesis of 2'-deoxy-5-(1-methoxyethyl)-4'-thiouridine (104).
Figure 7: 5-(1-Butoxyethyl)uracil 105 and 5-(1-butoxyethyl)-2'-deoxyuridine (106).
Scheme 18: Synthesis of β- and α-anomer of 5-(1-ethoxy-2-methylprop-1-yl)-2'-deoxyuridine.
Scheme 19: Synthesis of 5-(1-acyloxyethyl)-1-(tetrahydrofuran-2-yl)uracils 117 and 118.
Scheme 20: Synthesis of 5-(1,2-diacetoxyethyl)-3',5'-di-O-acetyl-2'-deoxyuridine 120.
Scheme 21: Synthesis of 5-[alkoxy-(4-nitrophenyl)methyl]uracils 124.
Scheme 22: Synthesis of 5-[alkoxy-(4-nitrophenyl)methyl]uridines 126 and 127.
Scheme 23: Synthesis of phosphoramidite 134. Reaction conditions 1: (a) TBDMSCl, imidazole, pyridine, 33 h, 99...
Scheme 24: Synthesis of phosphoramidite 145. (a) B(OCH3)3, CH(OCH3)3, Na2CO3, MeOH, 150 °C; (b) I2, (0.6 equiv...
Figure 8: Oligonucleotide 146.
Scheme 25: Synthesis of phosphoramidite 150.
Figure 9: 2'-Deoxyuridine derivatives 151–154.
Scheme 26: Synthesis of 2'-deoxyuridine derivatives 151–152.
Scheme 27: Synthesis of 5-[3-(2'-deoxyuridin-5-yl)-1-methoxyprop-1-yl]-2'-deoxyuridine (163).
Scheme 28: Synthesis of “metallocenonucleosides” 164 and 167.
Scheme 29: Synthesis of 5-(2,4:3,5-di-O-benzylidene-D-pentahydroxypentyl)-2,4-di-tert-butoxy-pyrimidine 172 an...
Figure 10: α- and β-pseudouridine (174 and 175).
Figure 11: 5'-Modified pseudouridine 176 and secopseudouridines 177, 178.
Figure 12: Methoxy derivatives 12, 13 and 28.
Figure 13: 5-(1-Methoxy-2,2-dihaloethyl)-2'-deoxyuridines 47–49.
Figure 14: 5-(1-Methoxyethyl)-2'-deoxyuridine 100.
Figure 15: 2'-Deoxy-5-(1-methoxyethyl)-4'-thiouridine (104).
Figure 16: 5-(1-Methoxy-2-azidoethyl)-2'-deoxyuridine (93).
Figure 17: 5-[1-(2-Halo(or nitro)ethoxy-2-iodoethyl)]-2'-deoxyuridines 50–54.
Figure 18: 5-[Alkoxy-(4-nitrophenyl)-methyl] uracil analogues 124, 126 and 127.
Figure 19: Methoxyiodoethyl pyrimidine nucleoside 79.
Figure 20: 5-[alkoxy-(4-nitro-phenyl)-methyl]uridines 126 and 127.
Beilstein J. Org. Chem. 2010, 6, 1035–1042, doi:10.3762/bjoc.6.118
Graphical Abstract
Scheme 1: Mechanism of dehydration of benzene-1,2-dihydrodiol.
Figure 1: Reactivity ratios for acid-catalyzed reaction of arene dihydrodiols.
Figure 2: Substrates for solvolysis measurements.
Scheme 2: Products of solvolysis and (ester) hydrolysis of trans-1-trichloroacetoxy-2-methoxy-1,2-dihydronaph...
Scheme 3: Products of solvolysis of trans-1-chloro-2-hydroxy-1,2,3,4-tetrahydronaphthalene.
Figure 3: Rate constants for aqueous solvolyses.
Figure 4: Cis/trans reactivity ratios for β-hydroxycarbocation forming reactions.
Figure 5: Comparison of the effect of a β-hydroxy group on the reactivity of cis and trans di- and tetrahdron...
Scheme 4: ‘Aromatic’ hyperconjugation for the benzenium ion.
Scheme 5: Stereochemistry of carbocation formation from solvolysis of cis-1-trichloroacetoxy-2-hydroxy-1,2-di...
Beilstein J. Org. Chem. 2010, 6, No. 52, doi:10.3762/bjoc.6.52
Graphical Abstract
Scheme 1: Synthetic plan towards quinoxaline derivatives.
Scheme 2: Preparation of o-alkynyl carbonyl derivatives 1. A: pyrazine series; B,C: quinoxaline series.
Scheme 3: Synthesis of quinoxaline derivative.
Scheme 4: Synthesis of azahydrophenanthrone derivatives.
Beilstein J. Org. Chem. 2008, 4, No. 48, doi:10.3762/bjoc.4.48
Graphical Abstract
Scheme 1: Total synthesis of longifolicin by Marshall’s group.
Scheme 2: Total synthesis of corossoline by Tanaka’s group.
Scheme 3: Total synthesis of corossoline by Wu’s group.
Scheme 4: Total synthesis of pseudo-annonacin A by Hanessian’s group.
Scheme 5: Total synthesis of tonkinecin by Wu’s group.
Scheme 6: Total synthesis of gigantetrocin A by Shi’s group.
Scheme 7: Total synthesis of annonacin by Wu’s group.
Scheme 8: Total synthesis of solamin by Kitahara’s group.
Scheme 9: Total synthesis of solamin by Mioskowski’s group.
Scheme 10: Total synthesis of cis-solamin by Makabe’s group.
Scheme 11: Total synthesis of cis-solamin by Brown’s group.
Scheme 12: The formal synthesis of (+)-cis-solamin by Donohoe’s group.
Scheme 13: Total synthesis of cis-solamin by Stark’s group.
Scheme 14: Total synthesis of mosin B by Tanaka’s group.
Scheme 15: Total synthesis of longicin by Hanessian’s group.
Scheme 16: Total synthesis of murisolin and 16,19-cis-murisolin by Tanaka’s group.
Scheme 17: Synthesis of a stereoisomer library of (+)-murisolin by Curran’s group.
Scheme 18: Total synthesis of murisolin by Makabe’s group.
Scheme 19: Total synthesis of reticulatain-1 by Makabe’s group.
Scheme 20: Total synthesis of muricatetrocin C by Ley’s group.
Scheme 21: Total synthesis of (4R,12S,15S,16S,19R,20R,34S)-muricatetrocin (146) and (4R,12R,15S,16S,19R,20R,34S...
Scheme 22: Total synthesis of parviflorin by Hoye’s group.
Scheme 23: Total synthesis of parviflorin by Trost’s group.
Scheme 24: Total synthesis of trilobacin by Sinha’s group.
Scheme 25: Total synthesis of 15-epi-annonin I 181b by Scharf’s group.
Scheme 26: Total synthesis of squamocin A and squamocin D by Scharf’s group.
Scheme 27: Total synthesis of asiminocin by Marshall’s group.
Scheme 28: Total synthesis of asiminecin by Marshall’s group.
Scheme 29: Total synthesis of (+)-(30S)-bullanin by Marshall’s group.
Scheme 30: Total synthesis of uvaricin by the group of Sinha and Keinan.
Scheme 31: Formal synthesis of uvaricin by Burke’s group.
Scheme 32: Total synthesis of trilobin by Marshall’s group.
Scheme 33: Total synthesis of trilobin by the group of Sinha and Keinan.
Scheme 34: Total synthesis of asimilobin by the group of Wang and Shi.
Scheme 35: Total synthesis of squamotacin by the group of Sinha and Keinan.
Scheme 36: Total synthesis of asimicin by Marshall’s group.
Scheme 37: Total synthesis of asimicin by the group of Sinha and Keinan.
Scheme 38: Total synthesis of asimicin by Roush’s group.
Scheme 39: Total synthesis of asimicin by Marshall’s group.
Scheme 40: Total synthesis of 10-hydroxyasimicin by Ley’s group.
Scheme 41: Total synthesis of asimin by Marshall’s group.
Scheme 42: Total synthesis of bullatacin by the group of Sinha and Keinan.
Scheme 43: Total synthesis of bullatacin by Roush’s group.
Scheme 44: Total synthesis of bullatacin by Pagenkopf’s group.
Scheme 45: Total synthesis of rollidecins C and D by the group of Sinha and Keinan.
Scheme 46: Total synthesis of 30(S)-hydroxybullatacin by Marshall’s group.
Scheme 47: Total synthesis of uvarigrandin A and 5(R)-uvarigrandin A by Marshall’s group.
Scheme 48: Total synthesis of membranacin by Brown’s group.
Scheme 49: Total synthesis of membranacin by Lee’s group.
Scheme 50: Total synthesis of rolliniastatin 1 and rollimembrin by Lee’s group.
Scheme 51: Total synthesis of longimicin D by the group of Maezaki and Tanaka.
Scheme 52: Total synthesis of the structure proposed for mucoxin by Borhan’s group.
Scheme 53: Modular synthesis of adjacent bis-THF annonaceous acetogenins by Marshall’s group.
Scheme 54: Total synthesis of 4-deoxygigantecin by Tanaka’s group.
Scheme 55: Total synthesis of squamostatins D by Marshall’s group.
Scheme 56: Total synthesis of gigantecin by Crimmins’s group.
Scheme 57: Total synthesis of gigantecin by Hoye’s group.
Scheme 58: Total synthesis of cis-sylvaticin by Donohoe’s group.
Scheme 59: Total synthesis of 17(S),18(S)-goniocin by Sinha’s group.
Scheme 60: Total synthesis of goniocin and cyclogoniodenin T by the group of Sinha and Keinan.
Scheme 61: Total synthesis of jimenezin by Takahashi’s group.
Scheme 62: Total synthesis of jimenezin by Lee’s group.
Scheme 63: Total synthesis of jimenezin by Hoffmann’s group.
Scheme 64: Total synthesis of muconin by Jacobsen’s group.
Scheme 65: Total synthesis of (+)-muconin by Kitahara’s group.
Scheme 66: Total synthesis of muconin by Takahashi’s group.
Scheme 67: Total synthesis of muconin by the group of Yoshimitsu and Nagaoka.
Scheme 68: Total synthesis of mucocin by the group of Sinha and Keinan.
Scheme 69: Total synthesis of mucocin by Takahashi’s group.
Scheme 70: Total synthesis of (−)-mucocin by Koert’s group.
Scheme 71: Total synthesis of mucocin by the group of Takahashi and Nakata.
Scheme 72: Total synthesis of mucocin by Evans’s group.
Scheme 73: Total synthesis of mucocin by Mootoo’s group.
Scheme 74: Total synthesis of (−)-mucocin by Crimmins’s group.
Scheme 75: Total synthesis of pyranicin by the group of Takahashi and Nakata.
Scheme 76: Total synthesis of pyranicin by Rein’s group.
Scheme 77: Total synthesis of proposed pyragonicin by the group of Takahashi and Nakata.
Scheme 78: Total synthesis of pyragonicin by Rein’s group.
Scheme 79: Total synthesis of pyragonicin by Takahashi’s group.
Scheme 80: Total synthesis of squamostanal A by Figadère’s group.
Scheme 81: Total synthesis of diepomuricanin by Tanaka’s group.
Scheme 82: Total synthesis of (−)-muricatacin [(R,R)-373a] and its enantiomer (+)-muricatacin [(S,S)-373b] by ...
Scheme 83: Total synthesis of epi-muricatacin (+)-(S,R)-373c and (−)-(R,S)-373d by Scharf’s group.
Scheme 84: Total synthesis of (−)-muricatacin 373a and 5-epi-(−)-muricatacin 373d by Uang’s group.
Scheme 85: Total synthesis of four stereoisomers of muricatacin by Yoon’s group.
Scheme 86: Total synthesis of (+)-muricatacin by Figadère’s group.
Scheme 87: Total synthesis of (+)-epi-muricatacin and (−)-muricatacin by Couladouros’s group.
Scheme 88: Total synthesis of muricatacin by Trost’s group.
Scheme 89: Total synthesis of (−)-(4R,5R)-muricatacin by Heck and Mioskowski’s group.
Scheme 90: Total synthesis of muricatacin (−)-373a by the group of Carda and Marco.
Scheme 91: Total synthesis of (−)- and (+)-muricatacin by Popsavin’s group.
Scheme 92: Total synthesis of (−)-muricatacin by the group of Bernard and Piras.
Scheme 93: Total synthesis of (−)-muricatacin by the group of Yoshimitsu and Nagaoka.
Scheme 94: Total synthesis of (−)-muricatacin by Quinn’s group.
Scheme 95: Total synthesis of montecristin by Brückner’s group.
Scheme 96: Total synthesis of (−)-acaterin by the group of Franck and Figadère.
Scheme 97: Total synthesis of (−)-acaterin by Singh’s group.
Scheme 98: Total synthesis of (−)-acaterin by Kumar’s group.
Scheme 99: Total synthesis of rollicosin by Quinn’s group.
Scheme 100: Total synthesis of Rollicosin by Makabe’s group.
Scheme 101: Total synthesis of squamostolide by Makabe’s group.
Scheme 102: Total synthesis of tonkinelin by Makabe’s group.
Beilstein J. Org. Chem. 2006, 2, No. 5, doi:10.1186/1860-5397-2-5
Graphical Abstract
Scheme 1: Mechanism for the formation of Pyrimido [4,4-c][1,2]diazepines.
Scheme 2: Reagents and conditions: i) EtOH, reflux.
Scheme 3: Reagents and conditions: i) EtOH, reflux.
Scheme 4: Mechanism for the formation of Pyrazolo [3,4-d]pyrimidines.
Beilstein J. Org. Chem. 2005, 1, No. 17, doi:10.1186/1860-5397-1-17
Graphical Abstract
Scheme 1: Annulation of the but-2-enolide ring.
Scheme 2: General Perkow reaction
Scheme 3: Novel reactions leading to the products 8 and 9.
Scheme 4: Reaction sites for the attack by P(OEt)3.
Scheme 5: Hypothetic intermediates in the formation of the products 8 and 9.