Search for "acid catalysis" in Full Text gives 107 result(s) in Beilstein Journal of Organic Chemistry.
Beilstein J. Org. Chem. 2010, 6, No. 18, doi:10.3762/bjoc.6.18
Graphical Abstract
Figure 1: Structures of pentasaccharides 1 and 2.
Scheme 1: Preparation of pentasaccharide 8. 1) MeOH, acidic ion exchange resin; 2) Ac2O, pyridine; 3) 80% HOA...
Scheme 2: Preparation of pentasaccharide 14. 1) MeOH, acidic ion exchange resin; 2) Ac2O, pyridine; 3) 80% HO...
Figure 2: Roman numbering of saccharide units in all pentasaccharides for NMR assignment.
Beilstein J. Org. Chem. 2010, 6, No. 6, doi:10.3762/bjoc.6.6
Graphical Abstract
Scheme 1: AlCl3-mediated reaction between amyl chloride and benzene as developed by Friedel and Crafts.
Figure 1: Most often used metal salts for catalytic FC alkylations and hydroarylations of arenes.
Figure 2: 1,1-diarylalkanes with biological activity.
Scheme 2: Alkylating reagents and side products produced.
Scheme 3: Initially reported TeCl4-mediated FC alkylation of 1-penylethanol with toluene.
Scheme 4: Sc(OTf)3-catalyzed FC benzylation of arenes.
Scheme 5: Reductive FC alkylation of arenes with arenecarbaldehydes.
Scheme 6: Iron(III)-catalyzed FC benzylation of arenes and heteroarenes.
Scheme 7: A gold(III)-catalyzed route to beclobrate.
Scheme 8: Catalytic FC-type alkylations of 1,3-dicarbonyl compounds.
Scheme 9: Iron(III)-catalyzed synthesis of phenprocoumon.
Scheme 10: Bi(OTf)3-catalyzed FC alkylation of benzyl alcohols developed by Rueping et al.
Scheme 11: (A) Bi(OTf)3-catalyzed intramolecular FC alkylation as an efficient route to substituted fulvenes. ...
Scheme 12: FC-type glycosylation of 1,2-dimethylindole and trimethoxybenzene.
Scheme 13: FC alkylation with highly reactive ferrocenyl- and benzyl alcohols. The reaction proceeds even with...
Scheme 14: Reductive FC alkylation of arenes with benzaldehyde and acetophenone catalyzed by the Ir-carbene co...
Scheme 15: Formal synthesis of 1,1-diarylalkanes from benzyl alcohols and styrenes.
Scheme 16: (A) Mo-catalyzed hydroarylation of styrenes and cyclohexenes. (B) Hydroalkylation–cyclization casca...
Scheme 17: Bi(III)-catalyzed hydroarylation of styrenes with arenes and heteroarenes.
Scheme 18: BiCl3-catalyzed ene/FC alkylation reaction cascade – A fast access to highly arylated dihydroindene...
Scheme 19: Au(I)/Ag(I)-catalyzed hydroarylation of indoles with styrenes, aliphatic and cyclic alkenes.
Scheme 20: First transition-metal-catalyzed ortho-hydroarylation developed by Beller et al.
Scheme 21: (A) Ti(IV)-mediated rearrangement of an N-benzylated aniline to the corresponding ortho-alkylated a...
Scheme 22: Dibenzylation of aniline gives potentially useful amine-based ligands in a one-step procedure.
Scheme 23: FC-type alkylations with allyl alcohols as alkylating reagents – linear vs. branched product format...
Scheme 24: (A) First catalytic FC allylation and cinnamylation using allyl alcohols and its derivatives. (B) E...
Scheme 25: FC allylation/cyclization reaction yielding substituted chromanes.
Scheme 26: Synthesis of (all-rac)-α-tocopherol utilizing Lewis- and strong Brønsted-acids.
Scheme 27: Au(III)-catalyzed cinnamylation of arenes.
Scheme 28: “Exhaustive” allylation of benzene-1,3,5-triol.
Scheme 29: Palladium-catalyzed allylation of indole.
Scheme 30: Pd-catalyzed synthesis of pyrroloindoles from L-tryptophane.
Scheme 31: Ru(IV)-catalyzed allylation of indole and pyrroles with unique regioselectivity.
Scheme 32: Silver(I)-catalyzed intramolecular FC-type allylation of arenes and heteroarenes.
Scheme 33: FC-type alkylations of arenes using propargyl alcohols.
Scheme 34: (A) Propargylation of arenes with stoichiometric amounts of the Ru-allenylidene complex 86. (B) Fir...
Scheme 35: Diruthenium-catalyzed formation of chromenes and 1H-naphtho[2,1-b]pyrans.
Scheme 36: Rhenium(V)-catalyzed FC propargylations as a first step in the total synthesis of podophyllotoxin, ...
Scheme 37: Scandium-catalyzed arylation of 3-sulfanyl- and 3-selanylpropargyl alcohols.
Scheme 38: Synthesis of 1,3-diarylpropynes via direct coupling of propargyl trichloracetimidates and arenes.
Scheme 39: Diastereoselective substitutions of benzyl alcohols.
Scheme 40: (A) First diastereoselective FC alkylations developed by Bach et al. (B) anti-Selective FC alkylati...
Scheme 41: Diastereoselective AuCl3-catalyzed FC alkylation.
Scheme 42: Bi(OTf)3-catalyzed alkylation of α-chiral benzyl acetates with silyl enol ethers.
Scheme 43: Bi(OTf)3-catalyzed diastereoselective substitution of propargyl acetates.
Scheme 44: Nucelophilic substitution of enantioenriched ferrocenyl alcohols.
Scheme 45: First catalytic enantioselective propargylation of arenes.
Beilstein J. Org. Chem. 2009, 5, No. 32, doi:10.3762/bjoc.5.32
Graphical Abstract
Figure 1: 2-Alkynyl-4-aryl pyridine and its benzo derivative.
Scheme 1: Sequential synthesis of 2-alkynyl-4-arylquinolines from 2,4-dichloroquinoline under palladium catal...
Scheme 2: The reaction mechanism of stepwise C–C bond forming reactions.
Beilstein J. Org. Chem. 2009, 5, No. 30, doi:10.3762/bjoc.5.30
Graphical Abstract
Scheme 1: Azide addition to aldehydes and formation of carbamoyl azides.
Figure 1: Microreactor setup for the in situ generation and use of iodine azide (IN3).
Scheme 2: Reaction of carbamoyl azide 4a with n-butyllithium.
Beilstein J. Org. Chem. 2008, 4, No. 48, doi:10.3762/bjoc.4.48
Graphical Abstract
Scheme 1: Total synthesis of longifolicin by Marshall’s group.
Scheme 2: Total synthesis of corossoline by Tanaka’s group.
Scheme 3: Total synthesis of corossoline by Wu’s group.
Scheme 4: Total synthesis of pseudo-annonacin A by Hanessian’s group.
Scheme 5: Total synthesis of tonkinecin by Wu’s group.
Scheme 6: Total synthesis of gigantetrocin A by Shi’s group.
Scheme 7: Total synthesis of annonacin by Wu’s group.
Scheme 8: Total synthesis of solamin by Kitahara’s group.
Scheme 9: Total synthesis of solamin by Mioskowski’s group.
Scheme 10: Total synthesis of cis-solamin by Makabe’s group.
Scheme 11: Total synthesis of cis-solamin by Brown’s group.
Scheme 12: The formal synthesis of (+)-cis-solamin by Donohoe’s group.
Scheme 13: Total synthesis of cis-solamin by Stark’s group.
Scheme 14: Total synthesis of mosin B by Tanaka’s group.
Scheme 15: Total synthesis of longicin by Hanessian’s group.
Scheme 16: Total synthesis of murisolin and 16,19-cis-murisolin by Tanaka’s group.
Scheme 17: Synthesis of a stereoisomer library of (+)-murisolin by Curran’s group.
Scheme 18: Total synthesis of murisolin by Makabe’s group.
Scheme 19: Total synthesis of reticulatain-1 by Makabe’s group.
Scheme 20: Total synthesis of muricatetrocin C by Ley’s group.
Scheme 21: Total synthesis of (4R,12S,15S,16S,19R,20R,34S)-muricatetrocin (146) and (4R,12R,15S,16S,19R,20R,34S...
Scheme 22: Total synthesis of parviflorin by Hoye’s group.
Scheme 23: Total synthesis of parviflorin by Trost’s group.
Scheme 24: Total synthesis of trilobacin by Sinha’s group.
Scheme 25: Total synthesis of 15-epi-annonin I 181b by Scharf’s group.
Scheme 26: Total synthesis of squamocin A and squamocin D by Scharf’s group.
Scheme 27: Total synthesis of asiminocin by Marshall’s group.
Scheme 28: Total synthesis of asiminecin by Marshall’s group.
Scheme 29: Total synthesis of (+)-(30S)-bullanin by Marshall’s group.
Scheme 30: Total synthesis of uvaricin by the group of Sinha and Keinan.
Scheme 31: Formal synthesis of uvaricin by Burke’s group.
Scheme 32: Total synthesis of trilobin by Marshall’s group.
Scheme 33: Total synthesis of trilobin by the group of Sinha and Keinan.
Scheme 34: Total synthesis of asimilobin by the group of Wang and Shi.
Scheme 35: Total synthesis of squamotacin by the group of Sinha and Keinan.
Scheme 36: Total synthesis of asimicin by Marshall’s group.
Scheme 37: Total synthesis of asimicin by the group of Sinha and Keinan.
Scheme 38: Total synthesis of asimicin by Roush’s group.
Scheme 39: Total synthesis of asimicin by Marshall’s group.
Scheme 40: Total synthesis of 10-hydroxyasimicin by Ley’s group.
Scheme 41: Total synthesis of asimin by Marshall’s group.
Scheme 42: Total synthesis of bullatacin by the group of Sinha and Keinan.
Scheme 43: Total synthesis of bullatacin by Roush’s group.
Scheme 44: Total synthesis of bullatacin by Pagenkopf’s group.
Scheme 45: Total synthesis of rollidecins C and D by the group of Sinha and Keinan.
Scheme 46: Total synthesis of 30(S)-hydroxybullatacin by Marshall’s group.
Scheme 47: Total synthesis of uvarigrandin A and 5(R)-uvarigrandin A by Marshall’s group.
Scheme 48: Total synthesis of membranacin by Brown’s group.
Scheme 49: Total synthesis of membranacin by Lee’s group.
Scheme 50: Total synthesis of rolliniastatin 1 and rollimembrin by Lee’s group.
Scheme 51: Total synthesis of longimicin D by the group of Maezaki and Tanaka.
Scheme 52: Total synthesis of the structure proposed for mucoxin by Borhan’s group.
Scheme 53: Modular synthesis of adjacent bis-THF annonaceous acetogenins by Marshall’s group.
Scheme 54: Total synthesis of 4-deoxygigantecin by Tanaka’s group.
Scheme 55: Total synthesis of squamostatins D by Marshall’s group.
Scheme 56: Total synthesis of gigantecin by Crimmins’s group.
Scheme 57: Total synthesis of gigantecin by Hoye’s group.
Scheme 58: Total synthesis of cis-sylvaticin by Donohoe’s group.
Scheme 59: Total synthesis of 17(S),18(S)-goniocin by Sinha’s group.
Scheme 60: Total synthesis of goniocin and cyclogoniodenin T by the group of Sinha and Keinan.
Scheme 61: Total synthesis of jimenezin by Takahashi’s group.
Scheme 62: Total synthesis of jimenezin by Lee’s group.
Scheme 63: Total synthesis of jimenezin by Hoffmann’s group.
Scheme 64: Total synthesis of muconin by Jacobsen’s group.
Scheme 65: Total synthesis of (+)-muconin by Kitahara’s group.
Scheme 66: Total synthesis of muconin by Takahashi’s group.
Scheme 67: Total synthesis of muconin by the group of Yoshimitsu and Nagaoka.
Scheme 68: Total synthesis of mucocin by the group of Sinha and Keinan.
Scheme 69: Total synthesis of mucocin by Takahashi’s group.
Scheme 70: Total synthesis of (−)-mucocin by Koert’s group.
Scheme 71: Total synthesis of mucocin by the group of Takahashi and Nakata.
Scheme 72: Total synthesis of mucocin by Evans’s group.
Scheme 73: Total synthesis of mucocin by Mootoo’s group.
Scheme 74: Total synthesis of (−)-mucocin by Crimmins’s group.
Scheme 75: Total synthesis of pyranicin by the group of Takahashi and Nakata.
Scheme 76: Total synthesis of pyranicin by Rein’s group.
Scheme 77: Total synthesis of proposed pyragonicin by the group of Takahashi and Nakata.
Scheme 78: Total synthesis of pyragonicin by Rein’s group.
Scheme 79: Total synthesis of pyragonicin by Takahashi’s group.
Scheme 80: Total synthesis of squamostanal A by Figadère’s group.
Scheme 81: Total synthesis of diepomuricanin by Tanaka’s group.
Scheme 82: Total synthesis of (−)-muricatacin [(R,R)-373a] and its enantiomer (+)-muricatacin [(S,S)-373b] by ...
Scheme 83: Total synthesis of epi-muricatacin (+)-(S,R)-373c and (−)-(R,S)-373d by Scharf’s group.
Scheme 84: Total synthesis of (−)-muricatacin 373a and 5-epi-(−)-muricatacin 373d by Uang’s group.
Scheme 85: Total synthesis of four stereoisomers of muricatacin by Yoon’s group.
Scheme 86: Total synthesis of (+)-muricatacin by Figadère’s group.
Scheme 87: Total synthesis of (+)-epi-muricatacin and (−)-muricatacin by Couladouros’s group.
Scheme 88: Total synthesis of muricatacin by Trost’s group.
Scheme 89: Total synthesis of (−)-(4R,5R)-muricatacin by Heck and Mioskowski’s group.
Scheme 90: Total synthesis of muricatacin (−)-373a by the group of Carda and Marco.
Scheme 91: Total synthesis of (−)- and (+)-muricatacin by Popsavin’s group.
Scheme 92: Total synthesis of (−)-muricatacin by the group of Bernard and Piras.
Scheme 93: Total synthesis of (−)-muricatacin by the group of Yoshimitsu and Nagaoka.
Scheme 94: Total synthesis of (−)-muricatacin by Quinn’s group.
Scheme 95: Total synthesis of montecristin by Brückner’s group.
Scheme 96: Total synthesis of (−)-acaterin by the group of Franck and Figadère.
Scheme 97: Total synthesis of (−)-acaterin by Singh’s group.
Scheme 98: Total synthesis of (−)-acaterin by Kumar’s group.
Scheme 99: Total synthesis of rollicosin by Quinn’s group.
Scheme 100: Total synthesis of Rollicosin by Makabe’s group.
Scheme 101: Total synthesis of squamostolide by Makabe’s group.
Scheme 102: Total synthesis of tonkinelin by Makabe’s group.
Beilstein J. Org. Chem. 2008, 4, No. 38, doi:10.3762/bjoc.4.38
Graphical Abstract
Scheme 1: Cyclopropylmethyl–homoallyl and nortricyclyl–norbornenyl radical systems.
Scheme 2: Deoxygenation-rearrangement-electrophile trapping.
Figure 1: Radical SOMO/α-nitrogen lone-pair interaction in the rearranged radical 7.
Figure 2: Other products obtained from xanthate 5 by tandem deoxygenation–rearrangement–electrophile trapping....
Scheme 3: Asymmetric hydroboration–oxidation of alkenes 14, 16 and 18.
Scheme 4: Deoxygenation–rearrangement–isomerisation of xanthates 20 and 23.
Scheme 5: Deoxygenation–rearrangement–electrophile trapping of xanthates 20 and 23.
Scheme 6: 2-Azabenzonorbornene as a masked pyrrolidine.
Scheme 7: Ring-opening–hydration–oxidation of azacycle 8.
Scheme 8: Preparation of trisubstituted pyrrolidine (+)-36.
Scheme 9: Preparation of pyrrolidine diester (+)-35 from Vince’s lactam 37.
Scheme 10: Acid-catalysed ring-opening–oxidation of azacycle (+)-8.
Scheme 11: Birch reduction of (+)-8 and 10.
Beilstein J. Org. Chem. 2007, 3, No. 16, doi:10.1186/1860-5397-3-16
Graphical Abstract
Scheme 1: The silylcupration of allenes.
Scheme 2: Silylcupration of 1,2-propadiene and reaction with oxo compounds.
Scheme 3: Silicon assisted cyclization of oxoallylsilanes.
Scheme 4: Silylcupration of terminal alkynes bearing electron-withdrawing functions.
Scheme 5: The acid-catalyzed cyclization of epoxyallylsilanes.
Scheme 6: Intramolecular cyclization of TMS-epoxyallylsilanes.
Scheme 7: Spiro-cyclopropanation from oxoallylsilanes.
Scheme 8: Cyclobutane formation from hydroxy-functionalized allysilanes.
Scheme 9: Cyclobutene formation from vinyltin cuprates and epoxides.
Scheme 10: Silylcupration of 1,2-propadiene and reaction with α,β-unsaturated nitriles.
Scheme 11: Cycloheptane formation from silylcupration of α,β-unsaturated imines.
Scheme 12: Seven membered ring formation from functionalized allylsilanes.