Search results

Search for "asymmetric" in Full Text gives 926 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Construction of hexabenzocoronene-based chiral nanographenes

  • Ranran Li,
  • Di Wang,
  • Shengtao Li and
  • Peng An

Beilstein J. Org. Chem. 2023, 19, 736–751, doi:10.3762/bjoc.19.54

Graphical Abstract
  • diastereomers, C3-symmetric (P,P,P/M,M,M)-117 and C1-asymmetric (P,P,M/M,M,P)-117 were separated and each racemic diastereomer was resolved into the enantiomers by chiral HPLC. The CPL spectra of both enantiomers show a maximum centered at 643 nm, a glum value estimated as 3 × 10−4 for (P,P,P/M,M,M)-117. The
PDF
Album
Review
Published 30 May 2023

Palladium-catalyzed enantioselective three-component synthesis of α-arylglycine derivatives from glyoxylic acid, sulfonamides and aryltrifluoroborates

  • Bastian Jakob,
  • Nico Schneider,
  • Luca Gengenbach and
  • Georg Manolikakes

Beilstein J. Org. Chem. 2023, 19, 719–726, doi:10.3762/bjoc.19.52

Graphical Abstract
  • products. Keywords: amino acids; asymmetric catalysis; multicomponent reaction; palladium catalysis; Petasis reaction; sulfonamides; Introduction α-Amino acids play a crucial role in every aspect of our human life [1]. They are important synthetic intermediates in the chemical industry and used for the
  • electrophilic iminium carbon, leading to the amine product as racemic mixture. Consequently, examples for asymmetric Petasis borono-Mannich reactions are rare [13] and usually rely on the utilization of chiral amine components in stoichiometric amounts [10][11]. As part of our research program utilizing the in
PDF
Album
Supp Info
Full Research Paper
Published 25 May 2023

Synthesis of medium and large phostams, phostones, and phostines

  • Jiaxi Xu

Beilstein J. Org. Chem. 2023, 19, 687–699, doi:10.3762/bjoc.19.50

Graphical Abstract
  • the catalytic antibody [24]. They are also potential chiral ligands in asymmetric catalysis [25] (Figure 1). Cyclizations and annulations are two major strategies for the synthesis of medium and large phostam, phostone, and phostine derivatives. The cyclizations have been applied in the construction
  • construction of the rings. However, the synthetic methods are still limited, especially for asymmetric synthetic methods. Thus, it is clear that highly stereoselective asymmetric synthetic methods to access various medium and large phostam, phostone, and phostine derivatives are in high demand and should be
PDF
Album
Review
Published 15 May 2023

Synthesis, structure, and properties of switchable cross-conjugated 1,4-diaryl-1,3-butadiynes based on 1,8-bis(dimethylamino)naphthalene

  • Semyon V. Tsybulin,
  • Ekaterina A. Filatova,
  • Alexander F. Pozharskii,
  • Valery A. Ozeryanskii and
  • Anna V. Gulevskaya

Beilstein J. Org. Chem. 2023, 19, 674–686, doi:10.3762/bjoc.19.49

Graphical Abstract
  • trifluoromethyl group of one independent molecule is disordered with an occupancy of fluorine atoms of 0.54/0.46, which makes the molecule asymmetric. The second independent molecule has an inversion center. Compared to the free bases 5 discussed above, the protonated form 11с demonstrates almost complete
PDF
Album
Supp Info
Full Research Paper
Published 15 May 2023

Enolates ambushed – asymmetric tandem conjugate addition and subsequent enolate trapping with conventional and less traditional electrophiles

  • Péter Kisszékelyi and
  • Radovan Šebesta

Beilstein J. Org. Chem. 2023, 19, 593–634, doi:10.3762/bjoc.19.44

Graphical Abstract
  • organic synthetic transformations. Chiral metal enolates obtained by asymmetric conjugate additions of organometallic reagents are structurally complex intermediates that can be employed in many transformations. In this review, we describe this burgeoning field that is reaching maturity after more than 25
  • . Short information on applications in total synthesis is also given. Keywords: asymmetric catalysis; conjugate addition; electrophile; enolate; tandem reaction; Introduction The formation of complex chiral molecules is a crucial task of organic synthesis that enables the synthesis of pharmaceuticals
  • were successfully employed in asymmetric conjugate additions (ACA) [3][4][5][6][7][8][9], mainly organozinc [10], Grignard [11][12][13], trialkylaluminum [14], or organozirconium reagents [15]. Additions with these reagents lead to corresponding zinc, magnesium, aluminum, and zirconium enolates, which
PDF
Album
Review
Published 04 May 2023

A new oxidatively stable ligand for the chiral functionalization of amino acids in Ni(II)–Schiff base complexes

  • Alena V. Dmitrieva,
  • Oleg A. Levitskiy,
  • Yuri K. Grishin and
  • Tatiana V. Magdesieva

Beilstein J. Org. Chem. 2023, 19, 566–574, doi:10.3762/bjoc.19.41

Graphical Abstract
  • complex. Solubility of the t-Bu-containing ligand and its Schiff base complexes is increased, facilitating scaling-up the reaction procedure and isolation of the functionalized amino acid. Keywords: asymmetric synthesis; chiral auxiliaries; cysteine derivatives; Ni–Schiff base complexes; voltammetry
  • testing; Introduction Asymmetric synthesis of functionalized amino acids is a subject of intense research because these compounds are of great demand for pharmaceutical industry, health care, and food production [1][2][3]. Various approaches to enantiomerically enriched amino acids have been developed
  • employing chiral auxiliaries [4][5] and asymmetric phase-transfer catalysis [6][7]. The former approach is commonly based on the application of chiral derivatives of glycine containing structurally diverse chiral auxiliaries, both cyclic [8][9][10][11] and acyclic [12][13]. Transition-metal complexes
PDF
Album
Supp Info
Full Research Paper
Published 27 Apr 2023

Transition-metal-catalyzed domino reactions of strained bicyclic alkenes

  • Austin Pounder,
  • Eric Neufeld,
  • Peter Myler and
  • William Tam

Beilstein J. Org. Chem. 2023, 19, 487–540, doi:10.3762/bjoc.19.38

Graphical Abstract
  • identical reactivity when exploring the Pd- and Ni-catalyzed asymmetric reductive ring opening of heterobicyclic alkenes, ultimately generating the bicyclic product 7 (Scheme 1) [32]. In 2003, the Cheng laboratory continued studying Ni-catalyzed routes towards coumarin cores through the Ni-catalyzed ring
  • used directly which showed comparable yields. The authors also reported preliminary results for an asymmetric variant of the reaction using (R,R)-Ph-BPE as a chiral ligand. Although the use of the chiral phosphine ligand resulted in slightly diminished yields, the authors were able to achieve ees up to
  • . While broadly successful, strongly electron-withdrawing groups lowered the yield of the reaction. In 2021, Isozaki and Nakamura reinvestigated the reaction and established an asymmetric variant of the Fe-catalyzed carbozincation of azabicyclic alkenes 77 (Scheme 13) [48]. Using (S,S)-chiraphos, the
PDF
Album
Review
Published 24 Apr 2023

Asymmetric synthesis of a stereopentade fragment toward latrunculins

  • Benjamin Joyeux,
  • Antoine Gamet,
  • Nicolas Casaretto and
  • Bastien Nay

Beilstein J. Org. Chem. 2023, 19, 428–433, doi:10.3762/bjoc.19.32

Graphical Abstract
  • analogue synthesis, starting from (+)-β-citronellene. Key stereoselective transformations involve an asymmetric Krische allylation, an aldol reaction under 1,5-anti stereocontrol, and a Tishchenko–Evans reduction accompanied by a peculiar ester transposition, allowing to install key stereogenic centers of
  • formed by the oxidation of an allyl moiety introduced by the asymmetric allylation of an aldehyde derived from (+)-β-citronellene. At this stage, we can speculate that the stereocontrol of this reaction could either follow a polar Felkin–Anh model [14][15][16] based on chiral aldehyde partner 8 [17], or
  • precluded the installation of the pyran ring – and the use of its well-known isomerization to set up important stereocenters [6][9] –, thus imposing the anticipated construction of key asymmetric centers. The following discussion will deal with the stereoselective synthesis of a stereopentade amenable to
PDF
Album
Supp Info
Letter
Published 03 Apr 2023

Combretastatins D series and analogues: from isolation, synthetic challenges and biological activities

  • Jorge de Lima Neto and
  • Paulo Henrique Menezes

Beilstein J. Org. Chem. 2023, 19, 399–427, doi:10.3762/bjoc.19.31

Graphical Abstract
  • furnished the α,β-unsaturated ester 69. The subsequent catalytic hydrogenation led to the desired phenol 70 (Scheme 13) [44][45]. An Ullmann coupling reaction using compounds 66 and 70 gave the corresponding diaryl ether 71, which was submitted to an asymmetric dihydroxylation reaction using (DHQD)2PHAL to
PDF
Album
Review
Published 29 Mar 2023

Discrimination of β-cyclodextrin/hazelnut (Corylus avellana L.) oil/flavonoid glycoside and flavonolignan ternary complexes by Fourier-transform infrared spectroscopy coupled with principal component analysis

  • Nicoleta G. Hădărugă,
  • Gabriela Popescu,
  • Dina Gligor (Pane),
  • Cristina L. Mitroi,
  • Sorin M. Stanciu and
  • Daniel Ioan Hădărugă

Beilstein J. Org. Chem. 2023, 19, 380–398, doi:10.3762/bjoc.19.30

Graphical Abstract
  • component (PC1) by all FTIR band intensities and along PC2 by the wavenumber of the asymmetric stretching vibrations of the CH groups at 2922.9 (± 0.4) cm−1 for ternary complexes and 2924.8 (± 1.4) cm−1 for β-CD hydrate. The first two PCA components explain 70.38% from the variance of the FTIR data (from a
  • band for the asymmetric stretching vibrations of the C–H groups appears at 2924.8 (± 1.4) cm−1, while the bending vibrations (in-plane, asymmetric, and symmetric) of the OH and CH groups appear as weak bands in the range of 1205–1643 cm−1. The stretching vibrations of the C–O and C–C groups in the
  • stretching vibrations of the =CH groups from the mono- and polyunsaturated FA moieties (especially oleic acid, but also palmitoleic and linoleic acids). The asymmetric and symmetric stretching vibrations of the CH groups provide strong bands at 2952.5 (± 0.3), 2922.5 (± 0), and 2853.2 (± 0) cm−1 due to the
PDF
Album
Supp Info
Full Research Paper
Published 28 Mar 2023

Group 13 exchange and transborylation in catalysis

  • Dominic R. Willcox and
  • Stephen P. Thomas

Beilstein J. Org. Chem. 2023, 19, 325–348, doi:10.3762/bjoc.19.28

Graphical Abstract
  • achieved. When AgOTf was replaced with silver (R)-BINOL phosphate, the asymmetric allylation proceeded in a moderate yield (60%) and enantioselectivity (40% ee). The structure of the ‘GaIOTf’ species was explored in more detail by Slattery, and a monovalent [GaI(18-crown-6)OTf] complex was isolated and
  • -catalysed asymmetric reduction of propargylic ketones and the proposed mechanism. H-B-9-BBN-catalysed C–F esterification of alkyl fluorides and the proposed mechanism. H-B-9-BBN-catalysed 1,4-hydroboration of enones and the proposed mechanism. Boric acid-promoted reduction of esters, lactones, and
  • -catalysed hydroboration of unsaturated compounds and the general reaction mechanism. a) Gallium-catalysed asymmetric hydroboration of ketones and the proposed mechanism. b) Gallium-catalysed hydroboration of CO2. c) Gallium-catalysed hydroboration of ketones and imines. Gallium(I)-catalysed allylation
PDF
Album
Review
Published 21 Mar 2023

Strategies to access the [5-8] bicyclic core encountered in the sesquiterpene, diterpene and sesterterpene series

  • Cécile Alleman,
  • Charlène Gadais,
  • Laurent Legentil and
  • François-Hugues Porée

Beilstein J. Org. Chem. 2023, 19, 245–281, doi:10.3762/bjoc.19.23

Graphical Abstract
  • was not controlled, yielding a mixture of stereoisomers. Recent developments were undertaken to propose an asymmetric version [56][57]. In its intramolecular version, the NHK reaction was successfully applied by Kishi in 1989 to forge the cyclooctane ring of ophiobolin C (30) [5-8-5] framework, thus
  • Cav3.1 calcium channel. From a chemical point of view, hypoestin A (177) presents a complex structure: it is composed of a [5-8-5-3] tetracyclic core skeleton, with five stereogenic centers, whose four of them are contiguous. Before their work, no asymmetric total synthesis of hypoestin A (177) has been
  • reported. During this study, they also looked into the asymmetric total synthesis of albolic acid (178) and ceroplastol II (179). Only one paper reported their total synthesis, using a reductive coupling of aldehydes for the synthesis of the eight-membered ring with an excellent yield of 96% [82]. However
PDF
Album
Review
Published 03 Mar 2023

1,4-Dithianes: attractive C2-building blocks for the synthesis of complex molecular architectures

  • Bram Ryckaert,
  • Ellen Demeyere,
  • Frederick Degroote,
  • Hilde Janssens and
  • Johan M. Winne

Beilstein J. Org. Chem. 2023, 19, 115–132, doi:10.3762/bjoc.19.12

Graphical Abstract
  • extensively explored, is in asymmetric synthesis, although this should be quite feasible. We hope this review can help inspire such future developments. a) 1,4-Dithiane-type building blocks that can serve as C2-synthons and b) examples of complex target structures that have been prepared using 1,4-dithiane
PDF
Album
Review
Published 02 Feb 2023

Organophosphorus chemistry: from model to application

  • György Keglevich

Beilstein J. Org. Chem. 2023, 19, 89–90, doi:10.3762/bjoc.19.8

Graphical Abstract
  • newly prepared thiophosphorus acids were not efficient in the asymmetric transfer hydrogenation of 2-phenylquinoline. However, they may find application in other model reactions. These days, stereoselective syntheses incorporating “green" chemical considerations are of utmost importance in medicinal
PDF
Editorial
Published 25 Jan 2023

Combining the best of both worlds: radical-based divergent total synthesis

  • Kyriaki Gennaiou,
  • Antonios Kelesidis,
  • Maria Kourgiantaki and
  • Alexandros L. Zografos

Beilstein J. Org. Chem. 2023, 19, 1–26, doi:10.3762/bjoc.19.1

Graphical Abstract
  • asymmetric conjugate reaction of commercially available 81 and 82 using Fletcher’s protocol (94% ee) [44]. A subsequent intramolecular arylation in the α-position of the ketone of 83, catalyzed by a Pd(II)–NHC [45], followed by methylation, provided cis-decalin 84 (Scheme 7). Appropriate redox modifications
  • distributed in Southeast Asia and China [70]. Compounds of this class are traditionally used for detoxification and as anti-inflammatory agents in Chinese medicine [71]. Qin and co-workers reported the asymmetric total syntheses of several eburnane alkaloids. Therein, they relied on one of their previous
  • (–)-eburnaminol (132), (+)-larutenine (133), (–)-terengganensine B (134), and (–)-strempeliopine (136), as well as the asymmetric formal total synthesis of (–)-terengganensine A (not shown, Scheme 11). The requisite common synthetic intermediate 129 for the cascade was accessed by an acid-promoted condensation of
PDF
Album
Review
Published 02 Jan 2023

Inclusion complexes of the steroid hormones 17β-estradiol and progesterone with β- and γ-cyclodextrin hosts: syntheses, X-ray structures, thermal analyses and API solubility enhancements

  • Alexios I. Vicatos,
  • Zakiena Hoossen and
  • Mino R. Caira

Beilstein J. Org. Chem. 2022, 18, 1749–1762, doi:10.3762/bjoc.18.184

Graphical Abstract
  • which no single crystals of adequate diffraction quality were isolated. The asymmetric units (ASUs) of β-CD·BES and β-CD·PRO (Figure 6) each consist of a single β-CD molecule, one severely disordered guest molecule (either 17β-estradiol for β-CD·BES, or progesterone for β-CD·PRO), and water molecules
  • host–guest complexation, as a consequence of a mutual-induced fit of host and guest molecules [39]. With reference to γ-CD·PRO, the asymmetric unit (ASU) comprises three pairs of glucose rings that generate three complete γ-CD molecules when rotation of these units around the four-fold axis parallel to
PDF
Album
Supp Info
Full Research Paper
Published 22 Dec 2022

Synthetic study toward tridachiapyrone B

  • Morgan Cormier,
  • Florian Hernvann and
  • Michaël De Paolis

Beilstein J. Org. Chem. 2022, 18, 1741–1748, doi:10.3762/bjoc.18.183

Graphical Abstract
  • yield was actually noted with (PhSe)2 as electrophile, 5 being obtained in 62% yield, enabling thus an evaluation of the next desymmetrization step. An overview of the scientific literature revealed that, while the asymmetric desymmetrization of prochiral 2,5-cyclohexadienones is a rich topic of
PDF
Album
Supp Info
Full Research Paper
Published 19 Dec 2022

Total synthesis of grayanane natural products

  • Nicolas Fay,
  • Rémi Blieck,
  • Cyrille Kouklovsky and
  • Aurélien de la Torre

Beilstein J. Org. Chem. 2022, 18, 1707–1719, doi:10.3762/bjoc.18.181

Graphical Abstract
  • . This first total synthesis of principinol D, in 19 steps as the longest linear sequence, is asymmetric even though a separation of the mixture of diastereomers resulting from fragment coupling is necessary. The SmI2-mediated reductive ring-closure of the 7-membered ring is among the most remarkable
  • cyclization based on a bridgehead tertiary carbocation intermediate forging the B ring; iii) redox manipulations and a 1,2-migration as final steps. The synthesis started from (S)-ketone 44 which was prepared via asymmetric CBS reduction of diketone 26 (Scheme 7). Firstly, this (S)-ketone 44 was transformed
PDF
Album
Review
Published 12 Dec 2022

Redox-active molecules as organocatalysts for selective oxidative transformations – an unperceived organocatalysis field

  • Elena R. Lopat’eva,
  • Igor B. Krylov,
  • Dmitry A. Lapshin and
  • Alexander O. Terent’ev

Beilstein J. Org. Chem. 2022, 18, 1672–1695, doi:10.3762/bjoc.18.179

Graphical Abstract
  • organic chemistry. It allows chemists to avoid the use of precious and (or) toxic metals by taking advantage of the catalytic activity of small and synthetically available molecules. Today, the term organocatalysis is mainly associated with redox-neutral asymmetric catalysis of C–C bond-forming processes
  • redox-neutral asymmetric organocatalysis, whereas organocatalysis by redox-active molecules stays in the shadows. For example, redox-active organic molecules are almost not mentioned in some recent overviews of compound types used in organocatalysis [3][12][13], except for photoredox catalysts [12][13
  • organocatalysis in general. Examples of typical reaction types for redox-neutral asymmetric organocatalysis are aldol reactions [13], Michael reactions [14][15][16], and Diels–Alder reactions [17][18]. The processes associated with changing oxidation states of atoms in substrates thus can be named “redox
PDF
Album
Perspective
Published 09 Dec 2022

Rhodium-catalyzed intramolecular reductive aldol-type cyclization: Application for the synthesis of a chiral necic acid lactone

  • Motoyuki Isoda,
  • Kazuyuki Sato,
  • Kenta Kameda,
  • Kana Wakabayashi,
  • Ryota Sato,
  • Hideki Minami,
  • Yukiko Karuo,
  • Atsushi Tarui,
  • Kentaro Kawai and
  • Masaaki Omote

Beilstein J. Org. Chem. 2022, 18, 1642–1648, doi:10.3762/bjoc.18.176

Graphical Abstract
  • , the reductive aldol-type reaction could also be applied to an asymmetric system, although the diastereoselectivity was poor. On the other hand, reductive Mannich-type reactions were achieved in good to excellent yields with high diastereoselectivity [45][46]. As part of a wider program of C–C bond
PDF
Album
Supp Info
Full Research Paper
Published 02 Dec 2022

One-pot double annulations to confer diastereoselective spirooxindolepyrrolothiazoles

  • Juan Lu,
  • Bin Yao,
  • Desheng Zhan,
  • Zhuo Sun,
  • Yun Ji and
  • Xiaofeng Zhang

Beilstein J. Org. Chem. 2022, 18, 1607–1616, doi:10.3762/bjoc.18.171

Graphical Abstract
  • ]. Pyrrolothiazole and spirooxindole moieties occupy exclusive positions as valuable source of natural products and therapeutic agents in organic synthesis and drug discovery [60][61][62][63][64][65][66][67][68]. We have developed a number of asymmetric reactions to construct spirooxindole-based scaffolds through
PDF
Album
Supp Info
Full Research Paper
Published 28 Nov 2022

Comparison of crystal structure and DFT calculations of triferrocenyl trithiophosphite’s conformance

  • Ruslan P. Shekurov,
  • Mikhail N. Khrizanforov,
  • Ilya A. Bezkishko,
  • Tatiana P. Gerasimova,
  • Almaz A. Zagidullin,
  • Daut R. Islamov and
  • Vasili A. Miluykov

Beilstein J. Org. Chem. 2022, 18, 1499–1504, doi:10.3762/bjoc.18.157

Graphical Abstract
  • by X-ray single-crystal diffraction. Triferrocenyl trithiophosphite has nine axes of internal rotation: three P–S bonds, three C–S bonds and three Fe–cyclopentadienyl axes. Rotation around the P–S bonds results in a totally asymmetric structure with three ferrocenylthio groups exhibiting different
PDF
Album
Supp Info
Full Research Paper
Published 25 Oct 2022

Design, synthesis, and evaluation of chiral thiophosphorus acids as organocatalysts

  • Karen R. Winters and
  • Jean-Luc Montchamp

Beilstein J. Org. Chem. 2022, 18, 1471–1478, doi:10.3762/bjoc.18.154

Graphical Abstract
  • asymmetric organocatalysis. In order to eliminate the need for C2-symmetry in common CPAs, various scaffolds containing C1-symmetrical thiophosphorus acids were chosen. These new compounds were synthesized and evaluated in the asymmetric transfer hydrogenation of 2-phenylquinoline. Although the efficacy of
  • the thiophosphorus acids was disappointing for this reaction, the work should be useful for developing structural design elements. Keywords: asymmetric; heterocycles; organocatalysis; phosphorus; synthesis; Introduction The importance of asymmetric organocatalysis was demonstrated by the 2021 Nobel
  • SPINOL [4][5] (Figure 1). The great success of these CPAs in asymmetric organocatalysis, is demonstrated by the publication of thousands of articles and reviews [6][7][8][9][10][11][12][13][14][15][16][17]. In all cases the C2-symmetry is required because of the prototropic tautomeric equilibrium in the
PDF
Album
Supp Info
Full Research Paper
Published 17 Oct 2022

Supramolecular approaches to mediate chemical reactivity

  • Pablo Ballester,
  • Qi-Qiang Wang and
  • Carmine Gaeta

Beilstein J. Org. Chem. 2022, 18, 1463–1465, doi:10.3762/bjoc.18.152

Graphical Abstract
  • the synthesis and properties of such BINOL-based chiral MIMs, together with their use in further diastereoselective modifications, their application in asymmetric catalysis, and stereoselective chemosensing. In their minireview, Prodip Howlader and Michael Schmittel [22] highlighted the recent results
PDF
Editorial
Published 14 Oct 2022
Graphical Abstract
  • as an enantioselective catalyst for the asymmetric ring opening of terminal epoxides by phenols. A library of α-aryloxy alcohols 3 was thereafter synthesized in good yield and high ee using 2f via the phenolic KR of epichlorohydrin. Keywords: α-aryloxy alcohols; chiral Co–salen; HKR
  • enantioselective synthesis in modern chemistry turns out to be accumulatively essential for the preparation of chiral drugs, which is a huge growing market in the future. Indeed, the asymmetric ring opening of terminal epoxides is one of the most important strategies for synthesizing drug-like building blocks and
  • key organic intermediates in the drug discovery and process chemistry [4][5][6]. Chiral metal–salen complexes were designed for catalyzing reaction processes that resulted in good yield, high regioselective and enantioselective control for the asymmetric ring opening of terminal epoxides. Various
PDF
Album
Supp Info
Letter
Published 10 Oct 2022
Other Beilstein-Institut Open Science Activities