Search results

Search for "catalysts" in Full Text gives 1263 result(s) in Beilstein Journal of Organic Chemistry. Showing first 200.

Honeycomb reactor: a promising device for streamlining aerobic oxidation under continuous-flow conditions

  • Masahiro Hosoya,
  • Yusuke Saito and
  • Yousuke Horiuchi

Beilstein J. Org. Chem. 2023, 19, 752–763, doi:10.3762/bjoc.19.55

Graphical Abstract
  • , conversion, yield and availability of the catalysts. Because the honeycomb reactor is made of porous material, the homogeneous reaction solution is a key factor. Stahl and Steves have developed a highly reactive aerobic oxidation [38]. This promising methodology enables completion of the reaction in 30 min
  • at room temperature (Table 1, entry 1). However, four kinds of catalysts were used, and a simpler catalytic system would be preferable. The highly reactive catalyst, 9-azanoradamantane N-oxyl (nor-AZADO), was tried with NaNO2 as a cocatalyst, which resulted in completion of the reaction in 60 min
  • (Table 1, entry 2) [39]. While this led to a simpler catalyst system, nor-AZADO is expensive. Hong and co-workers have developed a low-cost catalyst system using TEMPO and nitrate salts [40]. Fe(NO3)3 (Table 1, entry 3), Cu(NO3)2 (Table 1, entry 4), Zn(NO3)2 (Table 1, entry 5) worked as catalysts
PDF
Album
Supp Info
Full Research Paper
Published 31 May 2023

Strategies in the synthesis of dibenzo[b,f]heteropines

  • David I. H. Maier,
  • Barend C. B. Bezuidenhoudt and
  • Charlene Marais

Beilstein J. Org. Chem. 2023, 19, 700–718, doi:10.3762/bjoc.19.51

Graphical Abstract
  • commercial antidepressants, anxiolytics and anticonvulsants, but also in reengineering for other applications. More recently, the potential of the dibenzo[b,f]azepine moiety in organic light emitting diodes and dye-sensitized solar cell dyes has been recognised, while catalysts and molecular organic
  • transition metal (Ni, Fe, V) porphyrin catalysts and oxygen. Catalytic reduction (H2, Pd/C) affords 2,2'-diaminobibenzyl (20) in the subsequent step [28]. 1.2 Ring-closing via amine condensation The initial synthesis of 10,11-dihydro-5H-dibenzo[b,f]azepine (2a) was reported in 1899 by Thiele and Holzinger
  • . Knell et al. [40][41] reported a comparison of several catalysts, which included potassium-promoted iron, cobalt and manganese oxide catalysts, for the synthesis of 1a. Industrially, 1a is produced by the vapour phase dehydration of 2a over an iron/potassium/chromium catalyst system (Scheme 4) [42]. 2
PDF
Album
Review
Published 22 May 2023

pH-Responsive fluorescent supramolecular nanoparticles based on tetraphenylethylene-labelled chitosan and a six-fold carboxylated tribenzotriquinacene

  • Nan Yang,
  • Yi-Yan Zhu,
  • Wei-Xiu Lin,
  • Yi-Long Lu and
  • Wen-Rong Xu

Beilstein J. Org. Chem. 2023, 19, 635–645, doi:10.3762/bjoc.19.45

Graphical Abstract
  • extensive attention owing to their potential applications in biomedicine, chemical sensing and as catalysts [1][2]. It is possible to regulate the formation and breakdown of supramolecular structures using external stimuli, such as pH, light, temperature, enzymes, and competing reagents [3][4]. Among these
PDF
Album
Supp Info
Full Research Paper
Published 08 May 2023

Enolates ambushed – asymmetric tandem conjugate addition and subsequent enolate trapping with conventional and less traditional electrophiles

  • Péter Kisszékelyi and
  • Radovan Šebesta

Beilstein J. Org. Chem. 2023, 19, 593–634, doi:10.3762/bjoc.19.44

Graphical Abstract
  • sequence, were isolated in moderate to good yields and with high enantiopurities. Continuing with other Rh-based catalysts, the group of Lautens has also studied the stereoselective conjugate addition of alkynyl species to α,β-unsaturated ketones with subsequent trapping of the metal enolate by aldol
PDF
Album
Review
Published 04 May 2023

C3-Alkylation of furfural derivatives by continuous flow homogeneous catalysis

  • Grédy Kiala Kinkutu,
  • Catherine Louis,
  • Myriam Roy,
  • Juliette Blanchard and
  • Julie Oble

Beilstein J. Org. Chem. 2023, 19, 582–592, doi:10.3762/bjoc.19.43

Graphical Abstract
  • .19.43 Abstract The C3-functionalization of furfural using homogeneous ruthenium catalysts requires the preinstallation of an ortho-directing imine group, as well as high temperatures, which did not allow scaling up, at least under batch conditions. In order to design a safer process, we set out to
  • (L1)3] (comp3) catalysts allowed to show, on the one hand, the absence of solubility problems, and to discover, on the other hand, that the presence of three L1 ligands (comp3) leads to a reaction rate clearly lower than that of a catalyst carrying one or two ligands (see p. S7 of Supporting
  • Information File 1 for the reaction kinetic curves of catalysts). In addition, the catalyst with a single L1 ligand (comp1) was found to be more reactive than the one with two ligands (comp2), and was therefore selected for further optimization. In contrast, comparison of its reaction kinetic curve with that
PDF
Album
Supp Info
Full Research Paper
Published 03 May 2023

Direct C2–H alkylation of indoles driven by the photochemical activity of halogen-bonded complexes

  • Martina Mamone,
  • Giuseppe Gentile,
  • Jacopo Dosso,
  • Maurizio Prato and
  • Giacomo Filippini

Beilstein J. Org. Chem. 2023, 19, 575–581, doi:10.3762/bjoc.19.42

Graphical Abstract
  • ) and carbon–heteroatom (C–X) bonds has been and still is a central topic in organic synthesis [1][2]. Historically, organic chemists have extensively relied on the use of noble-metal-based catalysts (e.g., Pd, Rh, Ir, among others) to achieve such type of functionalization [3][4][5]. However, reliance
PDF
Album
Supp Info
Letter
Published 27 Apr 2023

Transition-metal-catalyzed domino reactions of strained bicyclic alkenes

  • Austin Pounder,
  • Eric Neufeld,
  • Peter Myler and
  • William Tam

Beilstein J. Org. Chem. 2023, 19, 487–540, doi:10.3762/bjoc.19.38

Graphical Abstract
  • reaction conditions, without adding additional reagents and catalysts, and in which the subsequent reactions result as a consequence of the functionality formed in previous steps [1]. Bicyclic alkenes, a family of strained ring systems, have seen widespread applications in organic synthesis in the last 20
  • -defined and rigid nature of these bicyclic alkenes creates two diastereotopic faces, namely the endo and exo face (Figure 2). The exo face is sterically less congested than the endo face; therefore, the exo face will typically interact with metal catalysts through side-on coordination of the olefin, and
  • metal catalysts towards coordination on the exo face biases the reaction outcome towards exo-selective functionalization. Upon exo coordination of a metal catalyst with the π system and subsequent migratory insertion, the resulting alkyl metal intermediate is quite limited in how it can propagate. In
PDF
Album
Review
Published 24 Apr 2023

Transition-metal-catalyzed C–H bond activation as a sustainable strategy for the synthesis of fluorinated molecules: an overview

  • Louis Monsigny,
  • Floriane Doche and
  • Tatiana Besset

Beilstein J. Org. Chem. 2023, 19, 448–473, doi:10.3762/bjoc.19.35

Graphical Abstract
  • polysubstituted derivative 21g was also functionalized in high yield (71%). Pleasingly, other metals have been also successfully applied for the trifluoromethylthiolation of aromatic derivatives by C(sp2)–H bond activation such as Rh(III) and Co(III)-based catalysts as depicted below. Rhodium catalysis: In 2015
  • catalysts for such functionalization. In 2013, the group of Daugulis described the copper-catalyzed ortho-2,2,2-trifluoroethoxylation of a 3-trifluoromethylated benzamide derived from 8-aminoquinoline, giving the corresponding product in 73% yield [149]. The group of Baidya showed that the dehydrogenative
PDF
Album
Review
Published 17 Apr 2023

Mechanochemical solid state synthesis of copper(I)/NHC complexes with K3PO4

  • Ina Remy-Speckmann,
  • Birte M. Zimmermann,
  • Mahadeb Gorai,
  • Martin Lerch and
  • Johannes F. Teichert

Beilstein J. Org. Chem. 2023, 19, 440–447, doi:10.3762/bjoc.19.34

Graphical Abstract
  • focus has seldomly been on the preparative methods to access the required catalysts themselves. As case in point, we decided to re-investigate the synthesis of copper(I)/N-heterocyclic carbene (NHC) complexes, which are broadly applicable catalysts for a wide variety of transformations [4][5][6]. While
  • to the wide area of applications of mechanochemical synthesis but also showcase that transition metal complexes bearing additional functional groups can be prepared with a ball milling synthesis. We think that our protocol could be useful for the atom economic preparation of other complex catalysts
PDF
Album
Supp Info
Letter
Published 14 Apr 2023

Combretastatins D series and analogues: from isolation, synthetic challenges and biological activities

  • Jorge de Lima Neto and
  • Paulo Henrique Menezes

Beilstein J. Org. Chem. 2023, 19, 399–427, doi:10.3762/bjoc.19.31

Graphical Abstract
  • catalysts, through dimerization of a single molecule. Pettit and co-workers investigated the influence of structural modifications on the biological activity of combretastatins D-2 (2) and D-4 (4). The authors also investigated the influence of solvents and functional groups in the total synthesis of the
PDF
Album
Review
Published 29 Mar 2023

CuAAC-inspired synthesis of 1,2,3-triazole-bridged porphyrin conjugates: an overview

  • Dileep Kumar Singh

Beilstein J. Org. Chem. 2023, 19, 349–379, doi:10.3762/bjoc.19.29

Graphical Abstract
  • . Since all of the triazole-linked porphyrins discussed in this review were prepared for different applications, most of the discussion focuses on the clicked synthetic parts under different reaction conditions that include different Cu catalysts, solvent systems, ligands, and temperatures. Most of the
  • than other copper catalysts, as it provided higher yields of the desired products (Scheme 4). In 2010, Shetti and Ravikanth [28] nicely utilized the "click reaction" approach for the preparation of a series of triazole-bridged porphyrin-ferrocene dyads 37a–d in 48–52% yield by the reaction between two
  • copper catalysts have been used for the CuAAC-based synthesis of these porphyrin conjugates, the majority of the reports using CuSO4 with either ascorbic acid or sodium ascorbate, and Cu(OAc)2 with sodium ascorbate under an organic solvent or a mixture of organic solvents and water. In addition, other Cu
PDF
Album
Review
Published 22 Mar 2023

Group 13 exchange and transborylation in catalysis

  • Dominic R. Willcox and
  • Stephen P. Thomas

Beilstein J. Org. Chem. 2023, 19, 325–348, doi:10.3762/bjoc.19.28

Graphical Abstract
  • review will explore the use of group 13 exchange reactions as a general method for catalytic turnover, and serves to expand on the previously published review on transborylation-enabled boron catalysis to include a broader range of catalysts and turnover reagents [47]. Review Boron catalysis The borane
  • -trifluorophenyl)borane [54], BH3 [55][56][57], and H-B-9-BBN [58] have also been reported as catalysts for the hydroboration of alkynes with HBpin (Scheme 2). Lloyd-Jones et al. investigated the mechanism of this reaction and found transborylation, group 13 exchange between boron atoms, enabled catalytic turnover
  • tris[3,5-bis(trifluoromethyl)phenyl]borane [59], tris(3,4,5-trifluorophenyl)borane [54], and BH3 [55][56] found to be competent catalysts of this transformation (Scheme 3a). The mechanism was proposed to be analogous to that of borane-catalysed alkyne hydroboration; alkene 4 hydroboration, followed by
PDF
Album
Review
Published 21 Mar 2023

Strategies to access the [5-8] bicyclic core encountered in the sesquiterpene, diterpene and sesterterpene series

  • Cécile Alleman,
  • Charlène Gadais,
  • Laurent Legentil and
  • François-Hugues Porée

Beilstein J. Org. Chem. 2023, 19, 245–281, doi:10.3762/bjoc.19.23

Graphical Abstract
  • ][9]. Metathesis reactions take place by the means of a metallic catalyst. Firstly, olefin metathesis was achieved with an air-sensitive tungsten complex [8]. An important focus on air-stable catalyst design was undertaken and contributed to the popularization of the reaction. Thus, Grubbs catalysts
  • of 1st and 2nd generation (G-I and G-II, respectively) as well as more recent Hoveyda–Grubbs 1st or 2nd generation (HG-I and HG-II, respectively) (Figure 2) are now commercially available. Today, the design of new efficient catalysts is at the heart of research [4][5][6][7][9][10][11][12]. The
  • from 2 equivalents of 99 and the cross metathesis adduct resulting from 99 and a styrene unit coming from the catalyst. In addition, the corresponding RCM on the alkene analogue of 99 did not proceed either with G-II or Schrock catalysts, showcasing the substrate sensitivity of this reaction. 1.3
PDF
Album
Review
Published 03 Mar 2023

Friedel–Crafts acylation of benzene derivatives in tunable aryl alkyl ionic liquids (TAAILs)

  • Swantje Lerch,
  • Stefan Fritsch and
  • Thomas Strassner

Beilstein J. Org. Chem. 2023, 19, 212–216, doi:10.3762/bjoc.19.20

Graphical Abstract
  • (Ac2O) to acetanisole 7 was chosen as the model reaction (Scheme 2) [36]. As different metal salts are known to be effective catalysts for this reaction [58][59][60], several metal chlorides were tested for their capability to catalyze the acylation in TAAILs. To our surprise, neither water-free AlCl3
PDF
Album
Supp Info
Full Research Paper
Published 23 Feb 2023

Sequential hydrozirconation/Pd-catalyzed cross coupling of acyl chlorides towards conjugated (2E,4E)-dienones

  • Benedikt Kolb,
  • Daniela Silva dos Santos,
  • Sanja Krause,
  • Anna Zens and
  • Sabine Laschat

Beilstein J. Org. Chem. 2023, 19, 176–185, doi:10.3762/bjoc.19.17

Graphical Abstract
  • . Hydrozirconation and Pd-catalyzed cross coupling of 25a and 26a with various solvents, reaction times, and temperatures. Hydrozirconation and Pd-catalyzed cross coupling of 25a and 26a by using different Pd catalysts. Hydrozirconation and Pd-catalyzed cross coupling of enyne 25 and acyl-chlorides 26
PDF
Album
Supp Info
Full Research Paper
Published 17 Feb 2023

Total synthesis of insect sex pheromones: recent improvements based on iron-mediated cross-coupling chemistry

  • Eric Gayon,
  • Guillaume Lefèvre,
  • Olivier Guerret,
  • Adrien Tintar and
  • Pablo Chourreu

Beilstein J. Org. Chem. 2023, 19, 158–166, doi:10.3762/bjoc.19.15

Graphical Abstract
  • -coupling systems involving this reagent are thus particularly scarce, and few examples are reported, using for some of them Ni-based catalysts [33]. 1-Bromopenta-1,3-diene used in the synthesis of 4 (Scheme 6) is not an exception. The expected (E,E) isomer was easily obtained from sorbic acid, a renewable
PDF
Album
Perspective
Published 14 Feb 2023

Catalytic aza-Nazarov cyclization reactions to access α-methylene-γ-lactam heterocycles

  • Bilge Banu Yagci,
  • Selin Ezgi Donmez,
  • Onur Şahin and
  • Yunus Emre Türkmen

Beilstein J. Org. Chem. 2023, 19, 66–77, doi:10.3762/bjoc.19.6

Graphical Abstract
  • isolated in 54% yield (Table 1, entry 8). The exchange of chloride with the non-coordinating BF4− anion, driven by the precipitation of NaCl, is proposed to be responsible for this positive result. Next, we turned our attention to the use of hydrogen-bond donors as anion-binding catalysts [57][58]. To this
  • (Table 1, entry 11). With this promising result in hand, we next examined the use of squaramides, which were shown to be highly effective hydrogen-bonding catalysts in a broad range of transformations [61][62][63][64]. When achiral squaramide derivatives 11 [65] and 12 [66] were tested in stoichiometric
  • amount to promote the aza-Nazarov reactions investigated in this study, the results discussed above showcase the potential of strong hydrogen-bond donors as effective anion binding catalysts for this transformation. Finally, it should be noted that all aza-Nazarov products that are presented in Table 1
PDF
Album
Supp Info
Full Research Paper
Published 17 Jan 2023

Modern flow chemistry – prospect and advantage

  • Philipp Heretsch

Beilstein J. Org. Chem. 2023, 19, 33–35, doi:10.3762/bjoc.19.3

Graphical Abstract
  • ]. Analogously, significantly increased photon transfer in flow reactors has been exploited. Where the molar attenuation coefficient is high, such as in many important photoredox catalysts, most of the irradiation is already absorbed within a thin layer of a few millimeters. Thus, in batch reactors the vast
PDF
Editorial
Published 06 Jan 2023

Inline purification in continuous flow synthesis – opportunities and challenges

  • Jorge García-Lacuna and
  • Marcus Baumann

Beilstein J. Org. Chem. 2022, 18, 1720–1740, doi:10.3762/bjoc.18.182

Graphical Abstract
  • -based inline extractions as the final purification step are rare, many applications exploit this approach as part of telescoped flow syntheses. This clearly shows the value of this approach for purifying reaction intermediates to remove spent reagents and unreacted reactants or remaining catalysts prior
  • only. This is facilitated when using heterogeneous catalysts or immobilized enzymes that are retained in cartridge reactors. For instance, Paradisi and co-workers reported an N-acetylation approach to produce melatonin analogs, where the pure product is obtained in the organic phase after evaporation
  • in industrial applications which may indicate an initial barrier of transferring such academic solutions from one group to another. Heterogeneous scavenging The versatility of flow technology allows researchers to use different immobilized reagents/catalysts in cartridges to perform reactions in a
PDF
Album
Perspective
Published 16 Dec 2022

Redox-active molecules as organocatalysts for selective oxidative transformations – an unperceived organocatalysis field

  • Elena R. Lopat’eva,
  • Igor B. Krylov,
  • Dmitry A. Lapshin and
  • Alexander O. Terent’ev

Beilstein J. Org. Chem. 2022, 18, 1672–1695, doi:10.3762/bjoc.18.179

Graphical Abstract
  • redox-neutral asymmetric organocatalysis, whereas organocatalysis by redox-active molecules stays in the shadows. For example, redox-active organic molecules are almost not mentioned in some recent overviews of compound types used in organocatalysis [3][12][13], except for photoredox catalysts [12][13
  • ]. The well-known and convenient classification of organocatalysts into Lewis bases, Lewis acids, Brønsted bases, and Brønsted acids [1] also leaves the redox-organocatalysts behind. Moreover, in numerous research papers employing redox-active molecules as catalysts the developed processes are not
  • ][29] and specialized on the specific types of organophotoredox catalysts, such as quinone derivatives [30][31], carbon nitrides [32][33], eosin [34][35][36], 4CzIPN [37][38], Bodipy derivatives [39], methylene blue [40], pyrylium salts [41], and perylene diimides [42]. Photochemical processes
PDF
Album
Perspective
Published 09 Dec 2022

Rhodium-catalyzed intramolecular reductive aldol-type cyclization: Application for the synthesis of a chiral necic acid lactone

  • Motoyuki Isoda,
  • Kazuyuki Sato,
  • Kenta Kameda,
  • Kana Wakabayashi,
  • Ryota Sato,
  • Hideki Minami,
  • Yukiko Karuo,
  • Atsushi Tarui,
  • Kentaro Kawai and
  • Masaaki Omote

Beilstein J. Org. Chem. 2022, 18, 1642–1648, doi:10.3762/bjoc.18.176

Graphical Abstract
  • . Therefore, various types of intramolecular aldol-type reactions have been developed and widely applied to the total synthesis of diverse natural products [9][10][11][12][13][14][15][16][17][18]. The reductive aldol-type reaction is another important variation that has been reported using metal catalysts
  • development of a rhodium-catalyzed intramolecular reductive cyclization, we found that using [RhCl(cod)]2 improved the diastereomeric ratio of the products compared with other Rh catalysts. It seems that using [RhCl(cod)]2 leads to milder reaction conditions that lead to highly improved diastereomeric ratios
PDF
Album
Supp Info
Full Research Paper
Published 02 Dec 2022

Formal total synthesis of macarpine via a Au(I)-catalyzed 6-endo-dig cycloisomerization strategy

  • Jiayue Fu,
  • Bingbing Li,
  • Zefang Zhou,
  • Maosheng Cheng,
  • Lu Yang and
  • Yongxiang Liu

Beilstein J. Org. Chem. 2022, 18, 1589–1595, doi:10.3762/bjoc.18.169

Graphical Abstract
  • ) itself failed to catalyze the cycloisomerization (Table 1, entry 1). Evaluation of a number of silver salts illustrated that silver hexafluoroantimonate (AgSbF6) was the optimal additive to activate the gold catalyst (Table 1, entries 2, 3, and 7). Screening of the other ligands of Au(I) catalysts
PDF
Album
Supp Info
Letter
Published 23 Nov 2022

An alternative C–P cross-coupling route for the synthesis of novel V-shaped aryldiphosphonic acids

  • Stephen J. I. Shearan,
  • Enrico Andreoli and
  • Marco Taddei

Beilstein J. Org. Chem. 2022, 18, 1518–1523, doi:10.3762/bjoc.18.160

Graphical Abstract
  • aryl halides and trialkyl phosphites [23]. Some of the most studied C–P coupling reactions involving aryl substrates are those employing catalysts, which are required in order to lower the energy barrier of the reaction and overcome the poor reactivity between aryl halides and trialkyl phosphites [24
  • ][25][26]. These catalytic cross-coupling reactions tend to follow similar pathways to the Michaelis–Arbuzov reaction, with the inclusion of a catalytic intermediate step. A number of suitable catalysts have been identified, ranging from nickel(II) bromide and nickel(II) chloride, to palladium(II
  • ) acetate and palladium(II) chloride [23][27][28]. Reactions involving these catalysts are most often carried out at high temperatures, usually in excess of 160 °C, and involve slow dropwise addition of the trialkyl phosphite to the substrate [23]. In the search for milder reaction conditions, a new
PDF
Album
Supp Info
Letter
Published 07 Nov 2022

Cyclometalated iridium complexes-catalyzed acceptorless dehydrogenative coupling reaction: construction of quinoline derivatives and evaluation of their antimicrobial activities

  • Hongling Shui,
  • Yuhong Zhong,
  • Renshi Luo,
  • Zhanyi Zhang,
  • Jiuzhong Huang,
  • Ping Yang and
  • Nianhua Luo

Beilstein J. Org. Chem. 2022, 18, 1507–1517, doi:10.3762/bjoc.18.159

Graphical Abstract
  • reactions have the advantages of high atom economy, simple operation, clean and green, and have become a research hotspot [31][32][33][34][35]. Cyclometalated iridium complexes with good catalytic efficiency and selectivity are very effective catalysts in ADC reactions. Moreover, these catalysts are easy to
  • ][42], we found that cyclometalated iridium catalysts can effectively catalyze the dehydrogenation of alcohols to produce carbonyl compounds and hydrogen gas. Therefore, we used cyclometalated iridium complex (TC-6) to catalyze the ADC reaction of o-aminobenzyl alcohols 1 and aryl/heteroaryl/alkyl
  • accompanied by 27% yield of 1,2-dihydroquinoline 4aa (Table 1, entry 1). Then, several other cyclometalated iridium complexes were studied. The catalysts TC-2 and TC-4 containing electron-donating ligands provided quinoline 3aa in higher chemoselectivity and yield (Table 1, entries 2 and 4). On the contrary
PDF
Album
Supp Info
Full Research Paper
Published 27 Oct 2022

Molecular and macromolecular electrochemistry: synthesis, mechanism, and redox properties

  • Shinsuke Inagi and
  • Mahito Atobe

Beilstein J. Org. Chem. 2022, 18, 1505–1506, doi:10.3762/bjoc.18.158

Graphical Abstract
  • , polymer electrolyte membrane electrolysis technology, and new methods coupled with photoredox catalysts or transition metal catalysis, resulting in remarkable progress in organic electrosynthetic processes. Theoretical calculations have also led to a better understanding of the electron transfer behavior
PDF
Editorial
Published 26 Oct 2022
Other Beilstein-Institut Open Science Activities