Search for "bicyclo[3.2.1]octane" in Full Text gives 9 result(s) in Beilstein Journal of Organic Chemistry.
Beilstein J. Org. Chem. 2023, 19, 593–634, doi:10.3762/bjoc.19.44
Graphical Abstract
Scheme 1: General scheme depicting tandem reactions based on an asymmetric conjugate addition followed by an ...
Scheme 2: Cu-catalyzed tandem conjugate addition of R2Zn/aldol reaction with chiral acetals.
Scheme 3: Cu-catalyzed asymmetric desymmetrization of cyclopentene-1,3-diones using a tandem conjugate additi...
Scheme 4: Stereocontrolled assembly of dialkylzincs, cyclic enones, and sulfinylimines utilizing a Cu-catalyz...
Scheme 5: Cu-catalyzed tandem conjugate addition/Mannich reaction (A). Access to chiral isoindolinones and tr...
Scheme 6: Cu-catalyzed tandem conjugate addition/nitro-Mannich reaction (A) with syn–anti or syn–syn selectiv...
Figure 1: Various chiral ligands utilized for the tandem conjugate addition/Michael reaction sequences.
Scheme 7: Cu-catalyzed tandem conjugate addition/Michael reaction: side-product formation with chalcone (A) a...
Scheme 8: Zn enolate trapping using allyl iodides (A), Stork–Jung vinylsilane reagents (B), and allyl bromide...
Scheme 9: Cu-catalyzed tandem conjugate addition/acylation through Li R2Zn enolate (A). A four-component coup...
Scheme 10: Selected examples for the Cu-catalyzed tandem conjugate addition/trifluoromethylthiolation sequence....
Scheme 11: Zn enolates trapped by vinyloxiranes: synthesis of allylic alcohols.
Scheme 12: Stereoselective cyclopropanation of Mg enolates formed by ACA of Grignard reagents to chlorocrotona...
Scheme 13: Domino aldol reactions of Mg enolates formed from coumarin and chromone.
Scheme 14: Oxidative coupling of ACA-produced Mg enolates.
Scheme 15: Tandem ACA of Grignard reagents to enones and Mannich reaction.
Scheme 16: Diastereodivergent Mannich reaction of Mg enolates with differently N-protected imines.
Scheme 17: Tandem Grignard–ACA–Mannich using Taddol-based phosphine-phosphite ligands.
Scheme 18: Tandem reaction of Mg enolates with aminomethylating reagents.
Scheme 19: Tandem reaction composed of Grignard ACA to alkynyl enones.
Scheme 20: Rh/Cu-catalyzed tandem reaction of diazo enoates leading to cyclobutanes.
Scheme 21: Tandem Grignard-ACA of cyclopentenones and alkylation of enolates.
Scheme 22: Tandem ACA of Grignard reagents followed by enolate trapping reaction with onium compounds.
Scheme 23: Mg enolates generated from unsaturated lactones in reaction with activated alkenes.
Scheme 24: Lewis acid mediated ACA to amides and SN2 cyclization of a Br-appended enolate.
Scheme 25: Trapping reactions of aza-enolates with Michael acceptors.
Scheme 26: Si enolates generated by TMSOTf-mediated ACA of Grignard reagents and enolate trapping reaction wit...
Scheme 27: Trapping reactions of enolates generated from alkenyl heterocycles (A) and carboxylic acids (B) wit...
Scheme 28: Reactions of heterocyclic Mg enolates with onium compounds.
Scheme 29: Synthetic transformations of cycloheptatrienyl and benzodithiolyl substituents.
Scheme 30: Aminomethylation of Al enolates generated by ACA of trialkylaluminum reagents.
Scheme 31: Trapping reactions of enolates with activated alkenes.
Scheme 32: Alkynylation of racemic aluminum or magnesium enolates.
Scheme 33: Trapping reactions of Zr enolates generated by Cu-ACA of organozirconium reagents.
Scheme 34: Chloromethylation of Zr enolates using the Vilsmeier–Haack reagent.
Scheme 35: Tandem conjugate borylation with subsequent protonation or enolate trapping by an electrophile.
Scheme 36: Tandem conjugate borylation/aldol reaction of cyclohexenones.
Scheme 37: Selected examples for the tandem asymmetric borylation/intramolecular aldol reaction; synthesis of ...
Scheme 38: Cu-catalyzed tandem methylborylation of α,β-unsaturated phosphine oxide in the presence of (R,Sp)-J...
Scheme 39: Cu-catalyzed tandem transannular conjugated borylation/aldol cyclization of macrocycles containing ...
Scheme 40: Stereoselective tandem conjugate borylation/Mannich cyclization: selected examples (A) and a multi-...
Scheme 41: Some examples of Cu-catalyzed asymmetric tandem borylation/aldol cyclization (A). Application to di...
Scheme 42: Atropisomeric P,N-ligands used in tandem conjugate borylation/aldol cyclization sequence.
Scheme 43: Selected examples for the enantioselective Cu-catalyzed borylation/intramolecular Michael addition ...
Scheme 44: Selected examples for the preparation of enantioenriched spiroindanes using a Cu-catalyzed tandem c...
Scheme 45: Enantioselective conjugate borylation of cyclobutene-1-carboxylic acid diphenylmethyl ester 175 wit...
Scheme 46: Cu-catalyzed enantioselective tandem conjugate silylation of α,β-unsaturated ketones with subsequen...
Scheme 47: Cu-catalyzed enantioselective tandem conjugate silylation of α,β-unsaturated ketones with subsequen...
Scheme 48: Cu-catalyzed tandem conjugate silylation/aldol condensation. The diastereoselectivity is controlled...
Scheme 49: Chiral Ru-catalyzed three-component coupling reaction.
Scheme 50: Rh-Phebox complex-catalyzed reductive cyclization and subsequent reaction with Michael acceptors th...
Scheme 51: Rh-catalyzed tandem asymmetric conjugate alkynylation/aldol reaction (A) and subsequent spiro-cycli...
Scheme 52: Rh-bod complex-catalyzed tandem asymmetric conjugate arylation/intramolecular aldol addition (A). S...
Scheme 53: Co-catalyzed C–H-bond activation/asymmetric conjugate addition/aldol reaction.
Scheme 54: (Diisopinocampheyl)borane-promoted 1,4-hydroboration of α,β-unsaturated morpholine carboxamides and...
Figure 2: Some examples of total syntheses that have been recently reviewed.
Scheme 55: Stereoselective synthesis of antimalarial prodrug (+)-artemisinin utilizing a tandem conjugate addi...
Scheme 56: Amphilectane and serrulatane diterpenoids: preparation of chiral starting material via asymmetric t...
Scheme 57: Various asymmetric syntheses of pleuromutilin and related compounds based on a tandem conjugate add...
Scheme 58: Total synthesis of glaucocalyxin A utilizing a tandem conjugate addition/acylation reaction sequenc...
Scheme 59: Installation of the exocyclic double bond using a tandem conjugate addition/aminomethylation sequen...
Scheme 60: Synthesis of the taxol core using a tandem conjugate addition/enolate trapping sequence with Vilsme...
Scheme 61: Synthesis of the tricyclic core of 12-epi-JBIR-23/24 utilizing a Rh-catalyzed asymmetric conjugate ...
Scheme 62: Total synthesis of (−)-peyssonoside A utilizing a Cu-catalyzed enantioselective tandem conjugate ad...
Beilstein J. Org. Chem. 2022, 18, 1707–1719, doi:10.3762/bjoc.18.181
Graphical Abstract
Figure 1: General structure of grayanane natural products.
Scheme 1: Grayanane biosynthesis.
Scheme 2: Matsumoto’s relay approach.
Scheme 3: Shirahama’s total synthesis of (–)-grayanotoxin III.
Scheme 4: Newhouse’s syntheses of fragments 25 and 29.
Scheme 5: Newhouse’s total synthesis of principinol D.
Scheme 6: Ding’s total synthesis of rhodomolleins XX and XXII.
Scheme 7: First key step of Luo’s strategy.
Scheme 8: Luo’s total synthesis of grayanotoxin III.
Scheme 9: Synthesis of principinol E and rhodomollein XX.
Scheme 10: William’s synthetic effort towards pierisformaside C.
Scheme 11: Hong’s synthetic effort towards rhodojaponin III.
Scheme 12: Recent strategies for grayanane synthesis.
Beilstein J. Org. Chem. 2020, 16, 1092–1099, doi:10.3762/bjoc.16.96
Graphical Abstract
Figure 1: Known biologically active bicyclo[3.2.1]octenes/octadienes.
Figure 2: Previously prepared bicyclo[3.2.1]octenes/octadienes with cholinesterase inhibitory properties.
Scheme 1: Synthesis of annulated furobenzobicyclo[3.2.1]octadiene compounds.
Scheme 2: Synthesis of annulated thiophenebicyclo[3.2.1]octadiene compounds 8-10.
Scheme 3: Synthesis of compound 11.
Figure 3: 1H NMR spectra (CDCl3) for the trans-isomers 3–6.
Figure 4: UV spectra in ethanol (95%) of the cis- and trans-isomers of compound 3.
Figure 5: Photolysis spectra of cis-3 (a) and trans-3 (b) in ethanol (95%).
Figure 6: UV spectra in ethanol (95%) of the trans-isomers of compounds 3–7.
Figure 7: Molecular structure of compound trans-6. Displacement ellipsoids are drawn for the probability of 3...
Figure 8: Crystal packing of trans-6. (a) Chain parallel to [100] and (b) chain parallel to [010].
Figure 9: 1H NMR spectra (CDCl3) of compounds 1, 8, and 9.
Scheme 4: Synthesis of compound 12.
Figure 10: UV spectra of compounds 1 and 12 in ethanol (95%).
Figure 11: Photolysis spectra of compound 12 in ethanol (95%).
Scheme 5: Possible outcomes of future photocatalytic oxygenation reactions of new benzobicyclo[3.2.1.]octadie...
Beilstein J. Org. Chem. 2019, 15, 2020–2028, doi:10.3762/bjoc.15.198
Graphical Abstract
Figure 1: Structures of compounds 1–12 isolated from B. sorokiniana.
Figure 2: Key 2D NMR correlations of bipolenins K–N (1–4).
Figure 3: Key NOESY correlations of bipolenins K–N (1–4).
Figure 4: (a) Experimental ECD spectrum of 1 (MeOH) compared to TDDFT-calculated spectra (B3LYP-D3/def2-TZVPP...
Figure 5: Relationship of sesquiterpenoids isolated in this study. A) Different groups of sativene/longifolen...
Beilstein J. Org. Chem. 2016, 12, 2093–2098, doi:10.3762/bjoc.12.198
Graphical Abstract
Scheme 1: An exclusive approach to 3,4-dihydro-2H-pyran-4-carboxamides from non-pyran sources.
Scheme 2: Known approach to pyran derivatives based on ketonitriles 1.
Figure 1: The molecular structure of 2a with atom-numbering scheme. Displacement ellipsoids are drawn at the ...
Scheme 3: Plausible reaction pathways for 3,4-dihydro-2H-pyran-4-carbxamides 2 formation.
Beilstein J. Org. Chem. 2016, 12, 985–999, doi:10.3762/bjoc.12.97
Graphical Abstract
Figure 1: Bridged polycyclic natural products.
Figure 2: Strategic limitations.
Scheme 1: Bridged rings from N–H bond insertions.
Scheme 2: The synthesis of deoxystemodin.
Scheme 3: A model system for ingenol.
Scheme 4: Formal synthesis of platensimycin.
Scheme 5: The formal synthesis of gerryine.
Scheme 6: Copper-catalyzed bridged-ring synthesis.
Scheme 7: Factors influencing insertion selectivity.
Scheme 8: Bridged-lactam formation.
Scheme 9: The total synthesis of (+)-codeine.
Scheme 10: A model system for irroratin.
Scheme 11: The utility of 1,6-insertion.
Scheme 12: Piperidine functionalization.
Scheme 13: Wilkinson’s catalyst for C–H bond insertion.
Scheme 14: Bridgehead insertion and the total synthesis of albene and santalene.
Scheme 15: The total synthesis of neopupukean-10-one.
Scheme 16: An approach to phomoidride B.
Scheme 17: Carbene cascade for fused bicycles.
Scheme 18: Cascade formation of bridged rings.
Scheme 19: Conformational effects.
Scheme 20: Hydrazone cascade reaction.
Scheme 21: Mechanistic studies.
Scheme 22: Gold carbene formation from alkynes.
Scheme 23: Au-catalyzed bridged-bicycle formation.
Scheme 24: Gold carbene/alkyne cascade.
Scheme 25: Gold carbene/alkyne cascade with C–H bond insertion.
Scheme 26: Platinum cascades.
Scheme 27: Tungsten cascade.
Beilstein J. Org. Chem. 2016, 12, 462–495, doi:10.3762/bjoc.12.48
Graphical Abstract
Scheme 1: Activation of carbonyl compounds via enamine and iminium intermediates [2].
Scheme 2: Electronic and steric interactions present in enamine activation mode [2].
Scheme 3: Electrophilic activation of carbonyl compounds by a thiourea moiety.
Scheme 4: Asymmetric synthesis of dihydro-2H-pyran-6-carboxylate 3 using organocatalyst 4 [16].
Scheme 5: Possible hydrogen-bonding for the reaction of (E)-methyl 2-oxo-4-phenylbut-3-enoate [16].
Scheme 6: Asymmetric desymmetrization of 4,4-cyclohexadienones using the Michael addition reaction with malon...
Scheme 7: The enantioselective synthesis of α,α-disubstituted cycloalkanones using catalyst 11 [18].
Scheme 8: The enantioselective synthesis of indolo- and benzoquinolidine compounds through aza-Diels–Alder re...
Scheme 9: Enantioselective [5 + 2] cycloaddition [20].
Scheme 10: Asymmetric synthesis of oxazine derivatives 26 [21].
Scheme 11: Asymmetric synthesis of bicyclo[3.3.1]nonadienone, core 30 present in (−)-huperzine [22].
Scheme 12: Asymmetric inverse electron-demand Diels-Alder reaction catalyzed by amine-thiourea 34 [23].
Scheme 13: Asymmetric entry to morphan skeletons, catalyzed by amine-thiourea 37 [24].
Scheme 14: Asymmetric transformation of (E)-2-nitroallyl acetate [25].
Scheme 15: Proposed way of activation.
Scheme 16: Asymmetric synthesis of nitrobicyclo[3.2.1]octan-2-one derivatives [26].
Scheme 17: Asymmetric tandem Michael–Henry reaction catalyzed by 50 [27].
Scheme 18: Asymmetric Diels–Alder reactions of 3-vinylindoles 51 [29].
Scheme 19: Proposed transition state and activation mode of the asymmetric Diels–Alder reactions of 3-vinylind...
Scheme 20: Desymmetrization of meso-anhydrides by Chin, Song and co-workers [30].
Scheme 21: Desymmetrization of meso-anhydrides by Connon and co-workers [31].
Scheme 22: Asymmetric intramolecular Michael reaction [32].
Scheme 23: Asymmetric addition of malonate to 3-nitro-2H-chromenes 67 [33].
Scheme 24: Intramolecular desymmetrization through an intramolecular aza-Michael reaction [34].
Scheme 25: Enantioselective synthesis of (−)-mesembrine [34].
Scheme 26: A novel asymmetric Michael–Michael reaction [35].
Scheme 27: Asymmetric three-component reaction catalyzed by Takemoto’s catalyst 77 [46].
Scheme 28: Asymmetric domino Michael–Henry reaction [47].
Scheme 29: Asymmetric domino Michael–Henry reaction [48].
Scheme 30: Enantioselective synthesis of derivatives of 3,4-dihydro-2H-pyran 89 [49].
Scheme 31: Asymmetric addition of α,α-dicyano olefins 90 to 3-nitro-2H-chromenes 91 [50].
Scheme 32: Asymmetric three-component reaction producing 2,6-diazabicyclo[2.2.2]octanones 95 [51].
Scheme 33: Asymmetric double Michael reaction producing substituted chromans 99 [52].
Scheme 34: Enantioselective synthesis of multi-functionalized spiro oxindole dienes 106 [53].
Scheme 35: Organocatalyzed Michael aldol cyclization [54].
Scheme 36: Asymmetric synthesis of dihydrocoumarins [55].
Scheme 37: Asymmetric double Michael reaction en route to tetrasubstituted cyclohexenols [56].
Scheme 38: Asymmetric synthesis of α-trifluoromethyl-dihydropyrans 121 [58].
Scheme 39: Tyrosine-derived tertiary amino-thiourea 123 catalyzed Michael hemiaketalization reaction [59].
Scheme 40: Enantioselective entry to bicyclo[3.2.1]octane unit [60].
Scheme 41: Asymmetric synthesis of spiro[4-cyclohexanone-1,3’-oxindoline] 126 [61].
Scheme 42: Kinetic resolution of 3-nitro-2H-chromene 130 [62].
Scheme 43: Asymmetric synthesis of chromanes 136 [63].
Scheme 44: Wang’s utilization of β-unsaturated α-ketoesters 87 [64,65].
Scheme 45: Asymmetric entry to trifluoromethyl-substituted dihydropyrans 144 [66].
Scheme 46: Phenylalanine-derived thiourea-catalyzed domino Michael hemiaketalization reaction [67].
Scheme 47: Asymmetric synthesis of α-trichloromethyldihydropyrans 149 [68].
Scheme 48: Takemoto’s thiourea-catalyzed domino Michael hemiaketalization reaction [69].
Scheme 49: Asymmetric synthesis of densely substituted cyclohexanes [70].
Scheme 50: Enantioselective synthesis of polysubstituted chromeno [4,3-b]pyrrolidine derivatines 157 [71].
Scheme 51: Enantioselective synthesis of spiro-fused cyclohexanone/5-oxazolone scaffolds 162 [72].
Scheme 52: Utilizing 2-mercaptobenzaldehydes 163 in cascade processes [73,74].
Scheme 53: Proposed transition state of the initial sulfa-Michael step [74].
Scheme 54: Asymmetric thiochroman synthesis via dynamic kinetic resolution [75].
Scheme 55: Enantioselective synthesis of thiochromans [76].
Scheme 56: Enantioselective synthesis of chromans and thiochromans synthesis [77].
Scheme 57: Enantioselective sulfa-Michael aldol reaction en route to spiro compounds [78].
Scheme 58: Enantioselective synthesis of 4-aminobenzo(thio)pyrans 179 [79].
Scheme 59: Asymmetric synthesis of tetrahydroquinolines [80].
Scheme 60: Novel asymmetric Mannich–Michael sequence producing tetrahydroquinolines 186 [81].
Scheme 61: Enantioselective synthesis of biologically interesting chromanes 190 and 191 [82].
Scheme 62: Asymmetric tandem Henry–Michael reaction [83].
Scheme 63: An asymmetric synthesis of substituted cyclohexanes via a dynamic kinetic resolution [84].
Scheme 64: Three component-organocascade initiated by Knoevenagel reaction [85].
Scheme 65: Asymmetric Michael reaction catalyzed by catalysts 57 and 211 [86].
Scheme 66: Proposed mechanism for the asymmetric Michael reaction catalyzed by catalysts 57 and 211 [86].
Scheme 67: Asymmetric facile synthesis of hexasubstituted cyclohexanes [87].
Scheme 68: Dual activation catalytic mechanism [87].
Scheme 69: Asymmetric Michael–Michael/aldol reaction catalyzed by catalysts 57, 219 and 214 [88].
Scheme 70: Asymmetric synthesis of substituted cyclohexane derivatives, using catalysts 57 and 223 [89].
Scheme 71: Asymmetric synthesis of substituted piperidine derivatives, using catalysts 223 and 228 [90].
Scheme 72: Asymmetric synthesis of endo-exo spiro-dihydropyran-oxindole derivatives catalyzed by catalyst 232 [91]....
Scheme 73: Asymmetric synthesis of carbazole spiroxindole derivatives, using catalyst 236 [92].
Scheme 74: Enantioselective formal [2 + 2] cycloaddition of enal 209 with nitroalkene 210, using catalysts 23 ...
Scheme 75: Asymmetric synthesis of polycyclized hydroxylactams derivatives, using catalyst 242 [94].
Scheme 76: Asymmetric synthesis of product 243, using catalyst 246 [95].
Scheme 77: Formation of the α-stereoselective acetals 248 from the corresponding enol ether 247, using catalys...
Scheme 78: Selective glycosidation, catalyzed by Shreiner’s catalyst 23 [97].
Beilstein J. Org. Chem. 2014, 10, 2222–2229, doi:10.3762/bjoc.10.230
Graphical Abstract
Scheme 1: Synthesis of 4- (1) and 5-(2-vinylstyryl)oxazoles (2).
Scheme 2: Irradiation of 4- (1) and 5-(2-vinylstyryl)oxazoles (2) (crude reaction mixtures).
Figure 1: Part of 1H NMR spectra in C6D6 of the crude photomixtures after 200 min (300 nm, rt ) of irradiatio...
Scheme 3: Plausible mechanisms of oxazoline ring-opening in photoproduct 10.
Figure 2: 1H NMR spectra in C6D6 of rel-(9S)-12a (a) and rel-(9S)-11 (b).
Scheme 4: Mechanism of the formation of polycyclic compounds (8–10).
Scheme 5: Reactions of the photochemical product 8 with EtOH, MeOD and H2O/silica gel.
Scheme 6: Plausible mechanisms of oxazoline ring opening in photoproduct 10 and formation of 12.
Beilstein J. Org. Chem. 2011, 7, 525–542, doi:10.3762/bjoc.7.61
Graphical Abstract
Scheme 1: Photochemistry of benzene.
Scheme 2: Three distinct modes of photocycloaddition of arenes to alkenes.
Scheme 3: Mode selectivity with respect of the free enthalpy of the radical ion pair formation.
Scheme 4: Photocycloaddition shows lack of mode selectivity.
Scheme 5: Mechanism of the meta photocycloaddition.
Scheme 6: Evidence of biradiacal involved in meta photocycloaddition by Reedich and Sheridan.
Scheme 7: Regioselectivity with electron withdrawing and electron donating substituents.
Scheme 8: Closure of cyclopropyl ring affords regioisomers.
Scheme 9: Endo versus exo product in the photocycloaddition of pentene to anisole [33].
Scheme 10: Regio- and stereoselectivity in the photocycloaddition of cyclopentene with a protected isoindoline....
Scheme 11: 2,6- and 1,3-addition in intramolecular approach.
Scheme 12: Linear and angularly fused isomers can be obtained upon intramolecular 1,3-addition.
Scheme 13: Synthesis of α-cedrene via diastereoselective meta photocycloaddition.
Scheme 14: Asymmetric meta photocycloaddition introduced by chirality of tether at position 2.
Scheme 15: Enantioselective meta photocycloaddition in β-cyclodextrin cavity.
Scheme 16: Vinylcyclopropane–cyclopentene rearrangement.
Scheme 17: Further diversification possibilities of the meta photocycloaddition product.
Scheme 18: Double [3 + 2] photocycloaddition reaction affording fenestrane.
Scheme 19: Total synthesis of Penifulvin B.
Scheme 20: Towards the total synthesis of Lacifodilactone F.
Scheme 21: Regioselectivity of ortho photocycloaddition in polarized intermediates.
Scheme 22: Exo and endo selectivity in ortho photocycloaddition.
Scheme 23: Ortho photocycloaddition of alkanophenones.
Scheme 24: Photocycloadditions to naphtalenes usually in an [2 + 2] mode [79].
Scheme 25: Ortho photocycloaddition followed by rearrangements.
Scheme 26: Stable [2 + 2] photocycloadducts.
Scheme 27: Ortho photocycloadditions with alkynes.
Scheme 28: Intramolecular ortho photocycloaddition and rearrangement thereof.
Scheme 29: Intramolecular ortho photocycloaddition to access propellanes.
Scheme 30: Para photocycloaddition with allene.
Scheme 31: Photocycloadditions of dianthryls.
Scheme 32: Photocycloaddition of enone with benzene.
Scheme 33: Intramolecular photocycloaddition affording multicyclic compounds via [4 + 2].
Scheme 34: Photocycloaddition described by Sakamoto et al.
Scheme 35: Proposed mechanism by Sakamoto et al.
Scheme 36: Photocycloaddition described by Jones et al.
Scheme 37: Proposed mechanism for the formation of benzoxepine by Jones et al.
Scheme 38: Photocycloaddition observed by Griesbeck et al.
Scheme 39: Mechanism proposed by Griesbeck et al.
Scheme 40: Intramolecular photocycloaddition of allenes to benzaldehydes.