Search for "cryptands" in Full Text gives 11 result(s) in Beilstein Journal of Organic Chemistry.
Beilstein J. Org. Chem. 2023, 19, 1630–1650, doi:10.3762/bjoc.19.120
Graphical Abstract
Figure 1: Porphyrin and crown ether.
Figure 2: Timeline demonstrating the contributions into the crown ether–porphyrin chemistry.
Figure 3: Tetra-crowned porphyrin 1 and dimer 2 formed upon K+ binding.
Figure 4: meso-Crowned 25-oxasmaragdyrins 3a–c and their boron(III) complexes (3a–c)-BF2.
Scheme 1: CsF ion-pair binding of 4. The molecular structure of 4-CsF is shown on the right [101].
Figure 5: CsF ion pair binding by 5. The molecular structure of 5-CsF is shown on the right [102].
Scheme 2: Ion-pair binding by 6. The molecular structure of (6-CsCl)2 is shown on the right [103].
Scheme 3: Hydrated fluoride binding by 7 [104].
Figure 6: β-Crowned porphyrin 8.
Figure 7: Crown ether-capped porphyrins 9.
Figure 8: The capped porphyrin 10 and complex [10-PQ](PF6)2.
Figure 9: The double-capped porphyrin 11.
Figure 10: Selected examples of iminoporphyrinoids [58,122].
Scheme 4: The synthesis of 13.
Scheme 5: Tripyrrane-based crown ether-embedding porphyrinoid 15.
Figure 11: Macrocycles 16–19 and their coordination compounds.
Scheme 6: The flexibility of 16-Co [66].
Figure 12: Hexagonal wheel composed of six 16-Co(III) monomers [66].
Scheme 7: The synthesis of 16-V [67].
Figure 13: The molecular structure of dimers [16-Mn]2 [67].
Scheme 8: Synthesis of crownphyrins 28–33. Compounds 23a/b and 29a/b were obtained from 4,7,10-trioxa-1,13-tr...
Figure 14: The molecular structures of 22a, 34a·(HCl)2, and 29b [69].
Figure 15: Molecular structures of 22a-Pb and (29b)2-Zn [69].
Scheme 9: Reactivity of 29a/b.
Scheme 10: Synthesis of 36 and 37 [131].
Scheme 11: Synthesis of 40–45.
Figure 16: Potential applications of porphyrin-crown ether hybrids.
Beilstein J. Org. Chem. 2020, 16, 2314–2321, doi:10.3762/bjoc.16.192
Graphical Abstract
Figure 1: Structures of electron-rich bis-macrocyclic host 1, and electron-poor guests bis(ammonium) 2, and b...
Figure 2: (a) Hunter’s 77 backbone-atom trefoil knot–metal complex [9]. (b) The world’s smallest knot: Leigh’s 7...
Figure 3: Schematic representation of the second-generation TLC approach to a 73 backbone atom trefoil knot.
Scheme 1: Two routes to azidobromide 6.
Scheme 2: Initial route to core diester 13. aLigand = tris(2-benzimidazolylmethyl)amine.
Scheme 3: Better yielding route to core diester 13. aLigand = tris(2-benzimidazolylmethyl)amine.
Scheme 4: Saponification of 13 and bis-macrocyclization to form host 1.
Scheme 5: Synthesis of 23 backbone-atom bis(ammonium) guest 2.
Scheme 6: Synthesis of 25 backbone-atom bis(pyridinium) guest 3.
Beilstein J. Org. Chem. 2019, 15, 1838–1839, doi:10.3762/bjoc.15.178
Beilstein J. Org. Chem. 2019, 15, 906–930, doi:10.3762/bjoc.15.88
Graphical Abstract
Scheme 1: Comparison between a normal sequential reaction and an MCR.
Scheme 2: Synthesis of tetrazoles and hydantoinimide derivatives by consecutive Ugi reactions [17].
Scheme 3: Synthesis of tetrazole-ketopiperazines by two consecutive Ugi reactions [19].
Scheme 4: Synthesis of acylhydrazino bis(1,5-disubstituted tetrazoles) through two hydrazine-Ugi-azide reacti...
Scheme 5: Synthesis of substituted α-aminomethyltetrazoles through two consecutive Ugi reactions (U-4CR and U...
Scheme 6: Synthesis of tetrazole peptidomimetics by direct use of amino acids in two consecutive Ugi reaction...
Scheme 7: One-pot 8CR based on 3 sequential IMCRs [25].
Scheme 8: Combination of IMCRs for the synthesis of substituted 2H-imidazolines [25].
Scheme 9: 6CR involving a tandem combination of Groebke–Blackburn–Bienaymé and Ugi reaction for the synthesis...
Scheme 10: 5CR involving a tandem combination of Groebke–Blackburn–Bienaymé and Passerini reaction for the syn...
Scheme 11: Synthesis of tubugis via three consecutive IMCRs [27].
Scheme 12: Synthesis of telaprevir through consecutive IMCRs [28].
Scheme 13: Another synthesis of telaprevir through consecutive IMCRs [29].
Scheme 14: a) Synthetic sequence for accessing diverse macrocycles containing the tetrazole nucleus by the uni...
Scheme 15: a) Synthetic sequence for the tetrazolic macrocyclic depsipeptides using a combination of two IMCRs...
Scheme 16: Synthesis of cyclic pentapeptoids by consecutive Ugi reactions [32].
Scheme 17: Synthesis of a cyclic pentapeptoid by consecutive Ugi reactions [32].
Scheme 18: MW-mediated synthesis of a cyclopeptoid by consecutive Ugi reactions [33].
Scheme 19: Synthesis of six cyclic pentadepsipeptoids via consecutive isocyanide-based IMCRs [34].
Scheme 20: Microwave-mediated synthesis of a cyclic heptapeptoid through four consecutive IMCRs [35].
Scheme 21: Macrocyclization of bifunctional building blocks containing diacid/diisonitrile and diamine/diisoni...
Scheme 22: Synthesis of steroid-biaryl ether hybrid macrocycles by MiBs [38].
Scheme 23: Synthesis of biaryl ether-containing macrocycles by MiBs [39].
Scheme 24: Synthesis of natural product-inspired biaryl ether-cyclopeptoid macrocycles [40].
Scheme 25: Synthesis of cholane-based hybrid macrolactams by MiBs [41].
Scheme 26: Synthesis of macrocyclic oligoimine-based DCL using the Ugi-4CR-based quenching approach [42].
Scheme 27: Dye-modified and photoswitchable macrocycles by MiBs [43].
Scheme 28: Synthesis of nonsymmetric cryptands by two sequential double Ugi-4CR-based macrocyclizations [44].
Scheme 29: Synthesis of steroid–aryl hybrid cages by sequential 2- and 3-fold Ugi-4CR-based macrocyclizations [46]....
Scheme 30: Ugi-MiBs approach towards natural product-like macrocycles [47].
Scheme 31: a) Bidirectional macrocyclization of peptides by double Ugi reaction. b) Ugi-4CR for the generation...
Scheme 32: MiBs based on the Passerini-3CR for the synthesis of macrolactones [49].
Scheme 33: Template-driven approach for the synthesis of macrotricycles 170 [50].
Beilstein J. Org. Chem. 2019, 15, 521–534, doi:10.3762/bjoc.15.46
Graphical Abstract
Scheme 1: Selectivity levels found in multiple multicomponent reactions. I) Innate selectivity; II) sequentia...
Scheme 2: Indiscriminate double Ugi MCR upon pyridine-2,6-dicarboxylic acid.
Scheme 3: Representative examples of MCR-polymer synthesis. A) Biginelli HTS of polymers; B) Passerini;- C) U...
Scheme 4: Concept of multicomponent macrocyclization.
Scheme 5: Supramolecular structures out of MMCR macrocyclizations.
Scheme 6: Macrocyclization by MMCRs. A) Staudinger MCR; B) boronic-imine MCR.
Scheme 7: Selective Sequential MMCRs. A and B) MCRs involving terephthalaldehyde; C) Multiple GBB processes w...
Scheme 8: Biased substrates for selective MMCRs.
Scheme 9: The Union concept. A) Asinger–Ugi combination; B) Passerini–Ugi/azide from anthranilic acid; C) Pas...
Scheme 10: Relevant examples of consecutive MCRs exploiting the Union Concept. A) Petasis-Ugi combination; B) ...
Scheme 11: Selective MMCRs featuring FGs with distinct reactivity along the sequence. A) Synthesis of aminomet...
Scheme 12: High order MMCRs. A) Ugi/Ugi–Smiles 7C combination; B) imidazoline-N-cyanomethylamide-Ugi union lea...
Scheme 13: Consecutive Ugi 4CR-deprotection–Ugi 4CR strategy towards A) PNA oligomers and B) peptidic tetrazol...
Scheme 14: Sequential Ugi 4CR-deprotection access to cyclopeptoids.
Scheme 15: Stepwise access to 6-aminopenicillanic acid derivative through an Asinger, deprotection, Joullié ap...
Scheme 16: A triple MCR-deprotection approach affording anticancer peptidomimetics.
Beilstein J. Org. Chem. 2019, 15, 210–217, doi:10.3762/bjoc.15.20
Graphical Abstract
Figure 1: Macrocyclic derivatives with sucrose scaffold.
Figure 2: Strategy to sucrose cryptands with additional macrocyclic unit.
Scheme 1: a) 50% NaOH, Bu4NHSO4, 74%; b) NaI, acetone, 95%; c) Na2CO3, ACN, 80 °C, 24 h, 33%.
Figure 3: A concept for synthesis of a cryptand from penta-O-benzylsucrose (2).
Scheme 2: a) MsCl, Et3N, DMAP, DCM, −78 °C to rt.; b) Na2CO3, KI, ACN, reflux.
Scheme 3: a) AllBr, TBAB, PhMe, 50% NaOH, 50 °C, 18 h, 94%; b) i. O3, DCM, −78 °C; ii. NaBH4, DCM, MeOH, rt, ...
Scheme 4: a) 50% NaOH, Bu4NHSO4, 58%; b) NaI, acetone, 95%; c) Na2CO3, ACN, 80 °C, 24 h, 45.5%.
Beilstein J. Org. Chem. 2018, 14, 1370–1377, doi:10.3762/bjoc.14.115
Graphical Abstract
Figure 1: Cryptands with 1,3,5-triphenylbenzene (1) and 2,4,6-triphenyl-1,3,5-triazine (2) aromatic reference...
Scheme 1: Synthesis of cryptand 2.
Figure 2: NMR spectra of cryptand 2: top, 1H NMR; bottom, 13C NMR.
Figure 3: Chemical shift changes of the reference signal (belonging to the more deshielded protons of the p-p...
Figure 4: The equilibrium geometry structure of cryptand 2 having 2,4,6-triphenyl-1,3,5-triazine caps.
Figure 5: The equilibrium geometry structures of the cryptand–anthracene (a) and cryptand–pyrene (b) host–gue...
Figure 6: The equilibrium geometry structure of the cryptand 2–1,5-dihydroxynaphthalene host–guest complex.
Figure 7: The inclusion dynamics of the anthracene in the cavity of the cryptand for different constrained di...
Beilstein J. Org. Chem. 2018, 14, 634–641, doi:10.3762/bjoc.14.50
Graphical Abstract
Scheme 1: Synthesis of macrocyclic derivative 4.
Figure 1: Possible route to sucrose cryptands 6.
Figure 2: Possible route to dienes of type 9.
Scheme 2: Unsuccessful attempts to amines 12a and 13b.
Scheme 3: Syntheses of "elongated" amines 17 and 18.
Scheme 4: Synthesis of macrocycle 25.
Beilstein J. Org. Chem. 2017, 13, 2157–2159, doi:10.3762/bjoc.13.215
Beilstein J. Org. Chem. 2013, 9, 1252–1268, doi:10.3762/bjoc.9.142
Graphical Abstract
Figure 1: Structure of [2.2.2] also known as 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane or Kr...
Figure 2: Structures of [2.2.bpy] and [2.bpy.bpy].
Figure 3:
Calculated (RB3LYP/LANL2DZp) structure (C2) for [K 2.2.bpy]+.
Figure 4:
Calculated (RB3LYP/LANL2DZp) structure (C2) for [K 2.bpy.bpy]+.
Figure 5:
Calculated (RB3LYP/LANL2DZp) transition state structures (C2) for [Mg 2.2.bpy]2+ and [Ga
2.2.bpy]...
Figure 6: Comparison of the calculated (RB3LYP/LANL2DZp) M–Npyridine/M–Nsp2 and M–NH3/M–Nsp3 coordinating dis...
Figure 7: Comparison of the calculated (RB3LYP/LANL2DZp) M–OH2 and M–O coordinating distances for [2.2.bpy] (...
Figure 8: Comparison of the calculated (RB3LYP/LANL2DZp) M–Npyridine/M–Nsp2 and M–NH3/M–Nsp3 coordinating dis...
Figure 9: Comparison of the calculated (RB3LYP/LANL2DZp) M–OH2 and M–O coordinating distances for [2.bpy.bpy]...
Scheme 1: Model reaction.
Figure 10:
RB3LYP/LANL2DZp complexation energies for [M 2.2.bpy]m+ according to Scheme 1, plotted against the ionic r...
Figure 11:
RB3LYP/LANL2DZp complexation energies for [M 2.bpy.bpy]m+ according to Scheme 1, plotted against the ionic...
Figure 12:
RB3LYP/LANL2DZp torsion angles CH2–Nsp3–Nsp3–CH2 (a) and (CH2)2–Nsp3–Nsp3–(CH2)2 (b) for [M 2.2.bp...
Figure 13:
RB3LYP/LANL2DZp torsion angle Nsp2–C–C–Nsp2 for [M 2.2.bpy]m+ and [M
2.bpy.bpy]m+ plotted against...
Figure 14:
RB3LYP/LANL2DZp torsion angle O–C–C–O for [M 2.2.bpy]m+ and [M
2.bpy.bpy]m+ plotted against the i...
Figure 15: Reverse development of the calculated torsion angles on the respective cryptate sides for [2.2.bpy]....
Figure 16: Reverse development of the calculated torsion angles on the respective cryptate sides for [2.bpy.bp...
Figure 17: Trend in the preferred ion selectivity of the studied cryptands. Every cryptand family is distingui...
Beilstein J. Org. Chem. 2010, 6, No. 32, doi:10.3762/bjoc.6.32
Graphical Abstract
Figure 1: Biologically important amines and quaternary ammonium salts: histamine (1), dopamine (2) and acetyl...
Figure 2: Crown ether 18-crown-6.
Figure 3: Conformations of 18-crown-6 (4) in solvents of different polarity.
Figure 4: Binding topologies of the ammonium ion depending on the crown ring size.
Figure 5: A “pseudorotaxane” structure consisting of 24-crown-8 and a secondary ammonium ion (5); R = Ph.
Figure 6: Typical examples of azacrown ethers, cryptands and related aza macrocycles.
Figure 7: Binding of ammonium to azacrown ethers and cryptands [111-113].
Figure 8: A 19-crown-6-ether with decalino blocking groups (11) and a thiazole-dibenzo-18-crown-6-ether (12).
Figure 9: 1,3-Bis(6-oxopyridazin-1-yl)propane derivatives 13 and 14 by Campayo et al.
Figure 10: Fluorescent azacrown-PET-sensors based on coumarin.
Figure 11: Two different pyridino-cryptands (17 and 18) compared to a pyridino-crown (19); chiral ammonium ion...
Figure 12: Pyridino-18-crown-6 ligand (21), a similar acridino-18-crown-6 ligand (22) and a structurally relat...
Figure 13: Ciral pyridine-azacrown ether receptors 24.
Figure 14: Chiral 15-crown-5 receptors 26 and an analogue 18-crown-6 ligand 27 derived from amino alcohols.
Figure 15: C2-symmetric chiral 18-crown-6 amino alcohol derivatives 28 and related macrocycles.
Figure 16: Macrocycles with diamide-diester groups (30).
Figure 17: C2-symmetric chiral aza-18-crown-6 ethers (31) with phenethylamine residues.
Figure 18: Chiral C-pivot p-methoxy-phenoxy-lariat ethers.
Figure 19: Chiral lariat crown ether 34.
Figure 20: Sucrose-based chiral crown ether receptors 36.
Figure 21: Permethylated fructooligosaccharide 37 showing induced-fit chiral recognition.
Figure 22: Biphenanthryl-18-crown-6 derivative 38.
Figure 23: Chiral lariat crown ethers derived from binol by Fuji et al.
Figure 24: Chiral phenolic crown ether 41 with “aryl chiral barriers” and guest amines.
Figure 25: Chiral bis-crown receptor 43 with a meso-ternaphthalene backbone.
Figure 26: Chromogenic pH-dependent bis-crown chemosensor 44 for diamines.
Figure 27: Triamine guests for binding to receptor 44.
Figure 28: Chiral bis-crown phenolphthalein chemosensors 46.
Figure 29: Crown ether amino acid 47.
Figure 30: Luminescent receptor 48 for bis-alkylammonium guests.
Figure 31: Luminescent CEAA (49a), a bis-CEAA receptor for amino acids (49b) and the structure of lysine bindi...
Figure 32: Luminescent CEAA tripeptide for binding small peptides.
Figure 33: Bis crown ether 51a self assembles co-operatively with C60-ammonium ion 51b.
Figure 34: Triptycene-based macrotricyclic dibenzo-[24]-crown-8 ether host 52 and guests.
Figure 35: Copper imido diacetic acid azacrown receptor 53a and the suggested His-Lys binding motif; a copper ...
Figure 36: Urea (54) and thiourea (55) benzo crown receptor for transport and extraction of amino acids.
Figure 37: Crown pyryliums ion receptors 56 for amino acids.
Figure 38: Ditopic sulfonamide bridged crown ether receptor 57.
Figure 39: Luminescent peptide receptor 58.
Figure 40: Luminescent receptor 59 for the detection of D-glucosamine hydrochloride in water/ethanol and lumin...
Figure 41: Guanidinium azacrown receptor 61 for simple amino acids and ditopic receptor 62 with crown ether an...
Figure 42: Chiral bicyclic guanidinium azacrown receptor 63 and similar receptor 64 for the enantioselective t...
Figure 43: Receptors for zwitterionic species based on luminescent CEAAs.
Figure 44: 1,10-Azacrown ethers with sugar podand arms and the anticancer agent busulfan.
Figure 45: Benzo-18-crown-6 modified β-cyclodextrin 69 and β-cyclodextrin functionalized with diaza-18-crown-6...
Figure 46: Receptors for colorimetric detection of primary and secondary ammonium ions.
Figure 47: Porphyrine-crown-receptors 72.
Figure 48: Porphyrin-crown ether conjugate 73 and fullerene-ammonium ion guest 74.
Figure 49: Calix[4]arene (75a), homooxocalix[4]arene (75b) and resorcin[4]arene (75c) compared (R = H, alkyl c...
Figure 50: Calix[4]arene and ammonium ion guest (R = H, alkyl, OAcyl etc.), possible binding sites; A: co-ordi...
Figure 51: Typical guests for studies with calixarenes and related molecules.
Figure 52: Lower rim modified p-tert-butylcalix[5]arenes 82.
Figure 53: The first example of a water soluble calixarene.
Figure 54: Sulfonated water soluble calix[n]arenes that bind ammonium ions.
Figure 55: Displacement assay for acetylcholine (3) with a sulfonato-calix[6]arene (84b).
Figure 56: Amino acid inclusion in p-sulfonatocalix[4]arene (84a).
Figure 57: Calixarene receptor family 86 with upper and lower rim functionalization.
Figure 58: Calix[6]arenes 87 with one carboxylic acid functionality.
Figure 59: Sulfonated calix[n]arenes with mono-substitution at the lower rim systematically studied on their r...
Figure 60: Cyclotetrachromotropylene host (91) and its binding to lysine (81c).
Figure 61: Calixarenes 92 and 93 with phosphonic acids groups.
Figure 62: Calix[4]arene tetraphosphonic acid (94a) and a double bridged analogue (94b).
Figure 63: Calix[4]arene tetraphosphonic acid ester (92c) for surface recognition experiments.
Figure 64: Calixarene receptors 95 with α-aminophosphonate groups.
Figure 65: A bridged homocalix[3]arene 95 and a distally bridged homocalix[4]crown 96.
Figure 66: Homocalix[3]arene ammonium ion receptor 97a and the Reichardt’s dye (97b) for colorimetric assays.
Figure 67: Chromogenic diazo-bridged calix[4]arene 98.
Figure 68: Calixarene receptor 99 by Huang et al.
Figure 69: Calixarenes 100 reported by Parisi et al.
Figure 70: Guest molecules for inclusion in calixarenes 100: DAP × 2 HCl (101a), APA (101b) and Lys-OMe × 2 HC...
Figure 71: Different N-linked peptido-calixarenes open and with glycol chain bridges.
Figure 72: (S)-1,1′-Bi-2-naphthol calixarene derivative 104 published by Kubo et al.
Figure 73: A chiral ammonium-ion receptor 105 based on the calix[4]arene skeleton.
Figure 74: R-/S-phenylalaninol functionalized calix[6]arenes 106a and 106b.
Figure 75: Capped homocalix[3]arene ammonium ion receptor 107.
Figure 76: Two C3 symmetric capped calix[6]arenes 108 and 109.
Figure 77: Phosphorous-containing rigidified calix[6]arene 110.
Figure 78: Calix[6]azacryptand 111.
Figure 79: Further substituted calix[6]azacryptands 112.
Figure 80: Resorcin[4]arene (75c) and the cavitands (113).
Figure 81: Tetrasulfonatomethylcalix[4]resorcinarene (114).
Figure 82: Resorcin[4]arenes (115a/b) and pyrogallo[4]arenes (115c, 116).
Figure 83: Displacement assay for acetylcholine (3) with tetracyanoresorcin[4]arene (117).
Figure 84: Tetramethoxy resorcinarene mono-crown-5 (118).
Figure 85: Components of a resorcinarene based displacement assay for ammonium ions.
Figure 86: Chiral basket resorcin[4]arenas 121.
Figure 87: Resorcinarenes with deeper cavitand structure (122).
Figure 88: Resorcinarene with partially open deeper cavitand structure (123).
Figure 89: Water-stabilized deep cavitands with partially structure (124, 125).
Figure 90: Charged cavitands 126 for tetralkylammonium ions.
Figure 91: Ditopic calix[4]arene receptor 127 capped with glycol chains.
Figure 92: A calix[5]arene dimer for diammonium salt recognition.
Figure 93: Calixarene parts 92c and 129 for the formation molecular capsules.
Figure 94: Encapsulation of a quaternary ammonium cation by two resorcin[4]arene molecules (NMe4+@[75c]2 × Cl−...
Figure 95: Encapsulation of a quaternary ammonium cation by six resorcin[4]arene molecules (NMe3D+@[130]6 × Cl−...
Figure 96: Structure and schematic of cucurbit[6]uril (CB[6], 131a).
Figure 97: Cyclohexanocucurbit[6]uril (CB′[6], 132) and the guest molecule spermine (133).
Figure 98: α,α,δ,δ-Tetramethylcucurbit[6]uril (134).
Figure 99: Structure of the cucurbituril-phthalhydrazide analogue 135.
Figure 100: Organic cavities for the displacement assay for amine differentiation.
Figure 101: Displacement assay methodology for diammonium- and related guests involving cucurbiturils and some ...
Figure 102: Nor-seco-Cucurbituril (±)-bis-ns-CB[6] (140) and guest molecules.
Figure 103: The cucurbit[6]uril based complexes 141 for chiral discrimination.
Figure 104: Cucurbit[7]uril (131c) and its ferrocene guests (142) opposed.
Figure 105: Cucurbit[7]uril (131c) guest inclusion and representative guests.
Figure 106: Cucurbit[7]uril (131c) binding to succinylcholine (145) and different bis-ammonium and bis-phosphon...
Figure 107: Paraquat-cucurbit[8]uril complex 149.
Figure 108: Gluconuril-based ammonium receptors 150.
Figure 109: Examples of clefts (151a), tweezers (151b, 151c, 151d) and clips (151e).
Figure 110: Kemp’s triacid (152a), on example of Rebek’s receptors (152b) and guests.
Figure 111: Amino acid receptor (154) by Rebek et al.
Figure 112: Hexagonal lattice designed hosts by Bell et al.
Figure 113: Bell’s amidinium receptor (156) and the amidinium ion (157).
Figure 114: Aromatic phosphonic acids.
Figure 115: Xylene phosphonates 159 and 160a/b for recognition of amines and amino alcohols.
Figure 116: Bisphosphonate recognition motif 161 for a colorimetric assay with alizarin complexone (163) for ca...
Figure 117: Bisphosphonate/phosphate clip 164 and bisphosphonate cleft 165.
Figure 118: N-Methylpyrazine 166a, N-methylnicotinamide iodide (166b) and NAD+ (166c).
Figure 119: Bisphosphate cavitands.
Figure 120: Bisphosphonate 167 of Schrader and Finocchiaro.
Figure 121: Tweezer 168 for noradrenaline (80b).
Figure 122: Different tripods and heparin (170).
Figure 123: Squaramide based receptors 172.
Figure 124: Cage like NH4+ receptor 173 of Kim et al.
Figure 125: Ammonium receptors 174 of Chin et al.
Figure 126: 2-Oxazolin-based ammonium receptors 175a–d and 176 by Ahn et al.
Figure 127: Racemic guest molecules 177.
Figure 128: Tripods based on a imidazole containing macrocycle (178) and the guest molecules employed in the st...
Figure 129: Ammonium ion receptor 180.
Figure 130: Tetraoxa[3.3.3.3]paracyclophanes 181 and a cyclophanic tetraester (182).
Figure 131: Peptidic bridged paraquat-cyclophane.
Figure 132: Shape-selective noradrenaline host.
Figure 133: Receptor 185 for binding of noradrenaline on surface layers from Schrader et al.
Figure 134: Tetraphosphonate receptor for binding of noradrenaline.
Figure 135: Tetraphosphonate 187 of Schrader and Finocchiaro.
Figure 136: Zinc-Porphyrin ammonium-ion receptors 188 and 189 of Mizutani et al.
Figure 137: Zinc porphyrin receptor 190.
Figure 138: Zinc porphyrin receptors 191 capable of amino acid binding.
Figure 139: Zinc-porphyrins with amino acid side chains for stereoinduction.
Figure 140: Bis-zinc-bis-porphyrin based on Tröger’s base 193.
Figure 141: BINAP-zinc-prophyrin derivative 194 and it’s guests.
Figure 142: Bisaryl-linked-zinc-porphyrin receptors.
Figure 143: Bis-zinc-porphyrin 199 for diamine recognition and guests.
Figure 144: Bis-zinc-porphyrin crown ether 201.
Figure 145: Bis-zinc-porphyrin 202 for stereodiscrimination (L = large substituent; S = small substituent).
Figure 146: Bis-zinc-porphyrin[3]rotaxane and its copper complex and guests.
Figure 147: Dien-bipyridyl ligand 206 for co-ordination of two metal atoms.
Figure 148: The ligand and corresponding tetradentate co-complex 207 serving as enantioselective receptor for a...
Figure 149: Bis(oxazoline)–copper(II) complex 208 for the recognition of amino acids in aqueous solution.
Figure 150: Zinc-salen-complexes 209 for the recognition tertiary amines.
Figure 151: Bis(oxazoline)–copper(II) 211 for the recognition of amino acids in aqueous solution.
Figure 152: Zn(II)-complex of a C2 terpyridine crown ether.
Figure 153: Displacement assay and receptor for aspartate over glutamate.
Figure 154: Chiral complex 214 for a colorimetric displacement assay for amino acids.
Figure 155: Metal complex receptor 215 with tripeptide side arms.
Figure 156: A sandwich complex 216 and its displaceable dye 217.
Figure 157: Lanthanide complexes 218–220 for amino acid recognition.
Figure 158: Nonactin (221), valinomycin (222) and vancomycin (223).
Figure 159: Monesin (224a) and a chiral analogue for enantiodiscrimination of ammonium guests (224b).
Figure 160: Chiral podands (226) compared to pentaglyme-dimethylether (225) and 18-crown-6 (4).
Figure 161: Lasalocid A (228).
Figure 162: Lasalocid derivatives (230) of Sessler et al.
Figure 163: The Coporphyrin I tetraanion (231).
Figure 164: Linear and cyclic peptides for ammonium ion recognition.
Figure 165: Cyclic and bicyclic depsipeptides for ammonium ion recognition.
Figure 166: α-Cyclodextrin (136a) and novocaine (236).
Figure 167: Helical diol receptor 237 by Reetz and Sostmann.
Figure 168: Ammonium binding spherand by Cram et al. (238a) and the cyclic[6]metaphenylacetylene 238b in compar...
Figure 169: Receptor for peptide backbone and ammonium binding (239).
Figure 170: Anion sensor principle with 3-hydroxy-2-naphthanilide of Jiang et al.
Figure 171: 7-bromo-3-hydroxy-N-(2-hydroxyphenyl)naphthalene 2-carboxamide (241) and its amine binding.
Figure 172: Naturally occurring catechins with affinity to quaternary ammonium ions.
Figure 173: Spiropyran (244) and merocyanine form (244a) of the amino acid receptors of Fuji et al.
Figure 174: Coumarin aldehyde (245) and its iminium species with amino acid bound (245a) by Glass et al.
Figure 175: Coumarin aldehyde appended with boronic acid.
Figure 176: Quinolone aldehyde dimers by Glass et al.
Figure 177: Chromogenic ammonium ion receptors with trifluoroacetophenone recognition motifs.
Figure 178: Chromogenic ammonium ion receptor with trifluoroacetophenone recognition motif bound on different m...