Search for "trifluoroacetic acid anhydride" in Full Text gives 4 result(s) in Beilstein Journal of Organic Chemistry.
Beilstein J. Org. Chem. 2021, 17, 771–799, doi:10.3762/bjoc.17.67
Graphical Abstract
Scheme 1: The electron transfer process in EDA complexes.
Scheme 2: Synthesis of benzo[b]phosphorus oxide 3 initiated by an EDA complex.
Scheme 3: Mechanism of the synthesis of quinoxaline derivative 7.
Scheme 4: Synthesis of imidazole derivative 10 initiated by an EDA complex.
Scheme 5: Synthesis of sulfamoylation product 12 initiated by an EDA complex.
Scheme 6: Mechanism of the synthesis of sulfamoylation product 12.
Scheme 7: Synthesis of indole derivative 22 initiated by an EDA complex.
Scheme 8: Synthesis of perfluoroalkylated pyrimidines 26 initiated by an EDA complex.
Scheme 9: Synthesis of phenanthridine derivative 29 initiated by an EDA complex.
Scheme 10: Synthesis of cis-tetrahydroquinoline derivative 32 initiated by an EDA complex.
Scheme 11: Mechanism of the synthesis of cis-tetrahydroquinoline derivative 32.
Scheme 12: Synthesis of phenanthridine derivative 38 initiated by an EDA complex.
Scheme 13: Synthesis of spiropyrroline derivative 40 initiated by an EDA complex.
Scheme 14: Synthesis of benzothiazole derivative 43 initiated by an EDA complex.
Scheme 15: Synthesis of perfluoroalkyl-s-triazine derivative 45 initiated by an EDA complex.
Scheme 16: Synthesis of indoline derivative 47 initiated by an EDA complex.
Scheme 17: Mechanism of the synthesis of spirocyclic indoline derivative 47.
Scheme 18: Synthesis of cyclobutane product 50 initiated by an EDA complex.
Scheme 19: Mechanism of the synthesis of spirocyclic indoline derivative 50.
Scheme 20: Synthesis of 1,3-oxazolidine compound 59 initiated by an EDA complex.
Scheme 21: Synthesis of trifluoromethylated product 61 initiated by an EDA complex.
Scheme 22: Synthesis of indole alkylation product 64 initiated by an EDA complex.
Scheme 23: Synthesis of perfluoroalkylation product 67 initiated by an EDA complex.
Scheme 24: Synthesis of hydrotrifluoromethylated product 70 initiated by an EDA complex.
Scheme 25: Synthesis of β-trifluoromethylated alkyne product 71 initiated by an EDA complex.
Scheme 26: Mechanism of the synthesis of 2-phenylthiophene derivative 74.
Scheme 27: Synthesis of allylated product 80 initiated by an EDA complex.
Scheme 28: Synthesis of trifluoromethyl-substituted alkynyl product 84 initiated by an EDA complex.
Scheme 29: Synthesis of dearomatized fluoroalkylation product 86 initiated by an EDA complex.
Scheme 30: Mechanism of the synthesis of dearomatized fluoroalkylation product 86.
Scheme 31: Synthesis of C(sp3)–H allylation product 91 initiated by an EDA complex.
Scheme 32: Synthesis of perfluoroalkylation product 93 initiated by an EDA complex.
Scheme 33: Synthesis of spirocyclic indolene derivative 95 initiated by an EDA complex.
Scheme 34: Synthesis of perfluoroalkylation product 97 initiated by an EDA complex.
Scheme 35: Synthesis of alkylated indole derivative 100 initiated by an EDA complex.
Scheme 36: Mechanism of the synthesis of alkylated indole derivative 100.
Scheme 37: Synthesis of arylated oxidized indole derivative 108 initiated by an EDA complex.
Scheme 38: Synthesis of 4-ketoaldehyde derivative 111 initiated by an EDA complex.
Scheme 39: Mechanism of the synthesis of 4-ketoaldehyde derivative 111.
Scheme 40: Synthesis of perfluoroalkylated olefin 118 initiated by an EDA complex.
Scheme 41: Synthesis of alkylation product 121 initiated by an EDA complex.
Scheme 42: Synthesis of acylation product 123 initiated by an EDA complex.
Scheme 43: Mechanism of the synthesis of acylation product 123.
Scheme 44: Synthesis of trifluoromethylation product 126 initiated by an EDA complex.
Scheme 45: Synthesis of unnatural α-amino acid 129 initiated by an EDA complex.
Scheme 46: Synthesis of thioether derivative 132 initiated by an EDA complex.
Scheme 47: Synthesis of S-aryl dithiocarbamate product 135 initiated by an EDA complex.
Scheme 48: Mechanism of the synthesis of S-aryl dithiocarbamate product 135.
Scheme 49: Synthesis of thioether product 141 initiated by an EDA complex.
Scheme 50: Mechanism of the synthesis of borate product 144.
Scheme 51: Synthesis of boronation product 148 initiated by an EDA complex.
Scheme 52: Synthesis of boration product 151 initiated by an EDA complex.
Scheme 53: Synthesis of boronic acid ester derivative 154 initiated by an EDA complex.
Scheme 54: Synthesis of β-azide product 157 initiated by an EDA complex.
Scheme 55: Decarboxylation reaction initiated by an EDA complex.
Scheme 56: Synthesis of amidated product 162 initiated by an EDA complex.
Scheme 57: Synthesis of diethyl phenylphosphonate 165 initiated by an EDA complex.
Scheme 58: Mechanism of the synthesis of diethyl phenylphosphonate derivative 165.
Scheme 59: Synthesis of (Z)-2-iodovinyl phenyl ether 168 initiated by an EDA complex.
Scheme 60: Mechanism of the synthesis of (Z)-2-iodovinyl phenyl ether derivative 168.
Scheme 61: Dehalogenation reaction initiated by an EDA complex.
Beilstein J. Org. Chem. 2017, 13, 2486–2501, doi:10.3762/bjoc.13.246
Graphical Abstract
Scheme 1: Some previously reported iodine(III) dichlorides relevant to this work.
Scheme 2: Syntheses of fluorous compounds of the formula RfnCH2X.
Scheme 3: Syntheses of fluorous compounds of the formula CF3CF2CF2O(CF(CF3)CF2O)xCF(CF3)CH2X'.
Scheme 4: Attempted syntheses of aliphatic fluorous iodine(III) dichlorides RfnICl2.
Scheme 5: Syntheses of aromatic fluorous compounds with one perfluoroalkyl group.
Scheme 6: Syntheses of aromatic fluorous compounds with two perfluoroalkyl groups.
Figure 1: Partial 1H NMR spectra (sp2 CH, 500 MHz, CDCl3) relating to the reaction of 1,3,5-(Rf6)2C6H3I and Cl...
Figure 2: Two views of the molecular structure of 1,3,5-(Rf6)2C6H3I with thermal ellipsoids at the 50% probab...
Figure 3: Ball-and-stick and space filling representations of the unit cell of 1,3,5-(Rf6)2C6H3I.
Figure 4: Free energies of chlorination of relevant aryl and alkyl iodides to the corresponding iodine(III) d...
Scheme 7: Other relevant fluorous compounds and reactions.
Figure 5: Views of the helical motif of the perfluorohexyl segments in crystalline 1,3,5-(Rf6)2C6H3I (left) a...
Beilstein J. Org. Chem. 2014, 10, 2270–2278, doi:10.3762/bjoc.10.236
Graphical Abstract
Scheme 1: One-pot synthesis of diketone 3h from acids 1d and 1c.
Scheme 2: Scope and limitations.
Figure 1: The molecular structure of 4a.
Scheme 3: One-pot synthesis of pyrazoles 6.
Beilstein J. Org. Chem. 2011, 7, 678–698, doi:10.3762/bjoc.7.80
Graphical Abstract
Figure 1: Investigated derivatives.
Figure 2: Modifications of uracil ring.
Figure 3: 5-(3,3,3-Trifluoro-1-methoxypropyl)-2'-deoxyuridine (1).
Scheme 1: Synthesis of 5-(3,3,3-trifluoro-1-methoxypropyl)-2'-deoxyuridine (1) and 5-(3,3,3-trifluoro-1-(2-pr...
Scheme 2: Synthesis of 5-(3,3,3-trifluoro-1-methoxyprop-1-yl)-5,6-dihydro-2'-deoxyuridine (8).
Scheme 3: Synthesis of 5-(methoxy-2-haloethyl)-2'-deoxyuridines 12 and 13.
Scheme 4: Synthesis of 5-(1-methoxy-2-iodoethyl) nucleosides 28–30.
Figure 4: [125I] radiolabelled 5-(1-methoxy-2-iodoethyl)-2'-deoxyuridine 31.
Scheme 5: Synthesis of 5-(1-alkoxy-2-iodoethyl) 34–36 and 5-(1-ethoxy-2,2-diiodoethyl)-2'-deoxyuridine (33).
Scheme 6: Synthesis of 5-(1-methoxy-2-iodoethyl)-3',5'-di-O-acetyl-2'-deoxyuridine (38) and 5-(1-ethoxy-2-iod...
Figure 5: 5-(1-Hydroxy(or ethoxy)-2-haloethyl)-3',5'-di-O-acetyl-2'-deoxyuridines 43–46.
Scheme 7: 5-(1-Methoxy-2,2-dihaloethyl)-2'-deoxyuridines 47–49.
Scheme 8: Synthesis of 5-[1-(2-haloethyl(or nitro)ethoxy)-2-iodoethyl]-2'-deoxyuridines 50–54.
Scheme 9: Synthesis of alkoxyuracil analogues 56–61.
Figure 6: 5-(Methoxy-2-haloethyl)uracils 62–64.
Scheme 10: Synthesis of perfluoro derivatives 70–74.
Scheme 11: Synthesis of 1-β-D-arabinofuranosyl-5-(1-methoxy-2-iodoethyl)uracil (79).
Scheme 12: Synthesis of 1-β-D-arabinofuranosyl-5-(2,2-dibromo-1-methoxyethyl)uracil 82 and uridine analogue 83....
Scheme 13: Synthesis of methoxy derivative 87.
Scheme 14: Synthesis of 5-(1-methoxy-2-azidoethyl)-2'-deoxyuridine (93).
Scheme 15: Synthesis of methoxyalkyl derivatives 96 and 97.
Scheme 16: Synthesis of 5-(1-methoxyethyl)-2'-deoxyuridine (100).
Scheme 17: Synthesis of 2'-deoxy-5-(1-methoxyethyl)-4'-thiouridine (104).
Figure 7: 5-(1-Butoxyethyl)uracil 105 and 5-(1-butoxyethyl)-2'-deoxyuridine (106).
Scheme 18: Synthesis of β- and α-anomer of 5-(1-ethoxy-2-methylprop-1-yl)-2'-deoxyuridine.
Scheme 19: Synthesis of 5-(1-acyloxyethyl)-1-(tetrahydrofuran-2-yl)uracils 117 and 118.
Scheme 20: Synthesis of 5-(1,2-diacetoxyethyl)-3',5'-di-O-acetyl-2'-deoxyuridine 120.
Scheme 21: Synthesis of 5-[alkoxy-(4-nitrophenyl)methyl]uracils 124.
Scheme 22: Synthesis of 5-[alkoxy-(4-nitrophenyl)methyl]uridines 126 and 127.
Scheme 23: Synthesis of phosphoramidite 134. Reaction conditions 1: (a) TBDMSCl, imidazole, pyridine, 33 h, 99...
Scheme 24: Synthesis of phosphoramidite 145. (a) B(OCH3)3, CH(OCH3)3, Na2CO3, MeOH, 150 °C; (b) I2, (0.6 equiv...
Figure 8: Oligonucleotide 146.
Scheme 25: Synthesis of phosphoramidite 150.
Figure 9: 2'-Deoxyuridine derivatives 151–154.
Scheme 26: Synthesis of 2'-deoxyuridine derivatives 151–152.
Scheme 27: Synthesis of 5-[3-(2'-deoxyuridin-5-yl)-1-methoxyprop-1-yl]-2'-deoxyuridine (163).
Scheme 28: Synthesis of “metallocenonucleosides” 164 and 167.
Scheme 29: Synthesis of 5-(2,4:3,5-di-O-benzylidene-D-pentahydroxypentyl)-2,4-di-tert-butoxy-pyrimidine 172 an...
Figure 10: α- and β-pseudouridine (174 and 175).
Figure 11: 5'-Modified pseudouridine 176 and secopseudouridines 177, 178.
Figure 12: Methoxy derivatives 12, 13 and 28.
Figure 13: 5-(1-Methoxy-2,2-dihaloethyl)-2'-deoxyuridines 47–49.
Figure 14: 5-(1-Methoxyethyl)-2'-deoxyuridine 100.
Figure 15: 2'-Deoxy-5-(1-methoxyethyl)-4'-thiouridine (104).
Figure 16: 5-(1-Methoxy-2-azidoethyl)-2'-deoxyuridine (93).
Figure 17: 5-[1-(2-Halo(or nitro)ethoxy-2-iodoethyl)]-2'-deoxyuridines 50–54.
Figure 18: 5-[Alkoxy-(4-nitrophenyl)-methyl] uracil analogues 124, 126 and 127.
Figure 19: Methoxyiodoethyl pyrimidine nucleoside 79.
Figure 20: 5-[alkoxy-(4-nitro-phenyl)-methyl]uridines 126 and 127.